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Ultra-Low Threshold Vertical-Cavity Surface-Emitting Lasers for

USAF Applications

Thomas R. Nelson, Jr., PhD.

AFRL/SNDD, 2241 Avionics Circle,

Wright Patterson AFB, OH 45419∗

(Dated: January 11, 2005.)

Abstract

This report summarizes research on the development of ultra-low threshold vertical-cavity

surface-emitting lasers. This in-house lab task, supported by AFOSR under LRIR 2305DW01,

was initiated by Dr. John Loehr, with AFOSR Program Manager Dr. Alan Craig. In 2001, Dr.

Thomas Nelson became the in-house project lead on this effort, with AFOSR management trans-

ferred first to Dr. Kent Miller, and most recently to Dr. Gernot Pomrenke. This task was initiated

in March 1996, and this report covers roughly the time period of March 1996 - Dec 2002.
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INTRODUCTION: GOAL OF THIS RESEARCH

The goal of this Air Force Office of Scientific Research (AFOSR) sponsored in-house labo-

ratory task has been the development of ultra-low threshold vertical-cavity surface emitting

lasers (VCSELs) for USAF applications. Interest in VCSELs by the Air Force Research

Laboratory (AFRL) Sensors Directorate, specifically from the Aerospace Components and

Subsystems Concept Division, Electron Devices Branch (AFRL/SNDD) was in several are-

nas:

* Low cost, short haul optical local area networks (LANS), with the vision of a ”fly-by-

fiber” approach to future aircraft systems.

* Phased arrays of VCSELs for potential laser radar (LADAR) applications.

* High speed optical components for implementation in radio-frequency to photonic

links (RF/Photonic links) for cost effective information transmission of conventional

RF radar signals.

* The development of photonic elements involved in optical true-time-delay systems,

again for improving conventional RF radar systems by the use of optoelectronic sub-

systems.

In all of these efforts, several underlying goals were desirable. These include low-cost

mass production methods, high-speed device operation, ease of integration onto existing

or future platforms, and a robust device capable of withstanding the unique environments

experienced by air and space craft.

At the time of the initiation of this in-house laboratory task, semiconductor optoelec-

tronic devices, including laser diodes, were advancing from fundamental research concepts

to advanced engineering projects for inclusion in photonic components and subsystems. In-

deed, a few companies were emerging that for the first time were making vertical-cavity

surface-emitting lasers (VCSELs) commercially available. Early emphasis was on high-

bandwidth applications and developing arrays of such devices for transceiver modules in

telecommunications systems. Such products were based on high-yield processes, not nec-

essarily state-of-the-art optoelectronics fabrication methods designed at high-performance

devices. Furthermore, as their usage was intended for terrestrial systems, overall power
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consumption, heat dissipation, etc were not effects of enormous concern. On an aerospace

platform, however, total power budget is a primary driving force in total system design, and

the use of high efficiency components is mandatory. These concerns, among others, gave the

ultra-low threshold focus to the effort summarized in this document.

In all the work detailed below, unless otherwise noted, the research was performed entirely

“in-house.” To clarify, the effort started with theoretical device design based upon the

work of AFRL/SNDD scientists, working in conjunction with the Air Force Institute of

Technology (co-located at Wright-Patterson Air Force Base). Device material growth was

accomplished by means of molecular beam epitaxy (MBE) using a Varian GENII MBE

system owned by the Materials Directorate (AFRL/MLPSM). This growth system is located

in the cleanroom of the Sensors Directorate, is operated by AFRL/MLPSM scientists, and

many upgrades and modifications were made to this tool to improve its device growth

capability as a direct result of the stringent growth requirements of this project. These will

be detailed in later sections. Similarly, all device fabrication and characterization were also

accomplished at AFRL/SNDD. One significant accomplishment as a result of this effort was

the development of a steam oxidation furnace with in-situ oxidation monitoring, and its role

in device fabrication will be explained in later sections.

BACKGROUND AND THEORY

This project officially commenced in March 1996, under the guidance of in-house project

leader Dr. John Loehr, and AFOSR program manager Dr. Alan Craig. The first goal

was to determine exactly what type of VCSEL structure to pursue. An overview VCSEL

taxonomy is presented in Fig. 1 showing the most common three varieties of such devices,

namely the etched post VCSEL (Fig. 1A), the proton-implanted VCSEL (Fig. 1B), and

the intra-cavity contacted VCSEL with native-oxide aperture layers (Fig. 1C). From these

examples, several design issues are apparent: VCSELs can be completely monolithic in

nature, with both top and bottom distributed Bragg reflector (DBR) mirrors formed from

epitaxial growth (as in Fig. 1A and Fig. 1B), or partially monolithic using a combination

of epitaxial (bottom mirror, Fig. 1C) and post-growth deposition (top mirror, Fig. 1C);

VCSELs can have their current contacts formed outside the cavity by suitably doping the

DBR mirrors (Fig. 1A and Fig. 1B), or via intra-cavity contacting (Fig. 1C); and there are
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a variety of means for confining the optical field as well as the injected current via etched

posts, proton implantation followed by annealing, native oxide apertures, or selective etching

(not shown). In each case, significant tradeoffs exist. For instance, proton implanted devices

without mesa isolation etching received the earliest commercial interest due to their relative

ease of fabrication. Production of these devices requires extensive initial calibrations of the

proton implant profile, however, not to mention the availability of an implantation system.

Etched post structures provide better optical confinement, but the deep etching through

the DBR mirrors required in these structures warrants exploring the relative benefits of wet

versus dry etching, in addition to the potential need to passivate the sidewalls roughened

by such etching to avoid surface recombination losses. Finally, the native-oxide aperture

devices require not only the etched post techniques above, but also an apparatus (steam

bubbler type system) running at sufficiently high temperature (T > 375◦C) to convert high

mole fraction Al(x)Ga(1− x)As (x ≥ 0.95) material into native oxides of aluminum.

In order to determine which structure to study, a program was initiated to develop a suite

of modelling tools to allow us to compare the relative benefits of each structure. Much of

the bandstructure code useful in determining laser gain as a function of injected carriers was

already in place from previous research [1–3], and could readily be incorporated into this

suite. More challenging, however, was the ability to model the optical “cold cavity” fields

in structures such as the oxide-apertured etched-post designs. The goal in this design effort

is the reduction (ideally, elimination) of threshold current, that is, carriers (electrons and

holes) that recombine but do not contribute to lasing. In large area lasers (edge-emitting

or VCSELs), the threshold current is proportional to the volume of the active region. In

most designs, this active region consists of one or more quantum wells (QWs) separated by

appropriate thickness barriers, and multiple sets of such wells and barriers are then grown

at appropriate positions in the lasing cavity so as to have maximum spatial overlap with

the intracavity lasing field mode. The use of both etched-post and oxide-apertured struc-

tures in early efforts demonstrated improvements in threshold current reduction, primarily

by restricting and refining the transverse gain profile to overlap better with the optical field

mode. However, worth noting is the fact that such lateral patterning also affects the trans-

verse optical confinement factor. When the posts and/or apertures shrink to dimensions on

the order of the lasing emission wavelength, three optical effects begin to emerge: (1) The

spatial profile of each cavity mode changes from a plane wave to a 3-D waveguide type of
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FIG. 1: Schematic cross sections of three common types of VCSELs. (A) An etched post structure,

extra-cavity contacted, with oxide apertures (B) A proton implanted, extra-cavity contacted device.

(C) An intra-cavity contacted device with oxide apertures, showing the possibility of top and

bottom DBR mirrors formed from different methods (epitaxially grown bottom mirror, deposited

top mirror).

mode; such a change then alters the modal reflectivity and the optical/active region overlap;

(2) The boundaries of the oxide aperture or etched post begin to act as sources of diffraction

losses, shedding optical radiation laterally from the device; (3) finally, the cavity lasing mode

begins to blueshift in wavelength, with the spacing between modes increasing. All of these

effects, then, play an important role in the effective design of low threshold lasers.

Previous efforts to simulate VCSEL cavity structures incorporating oxide apertures have

varied significantly in their level of complexity and detail, in addition to their predicted

results. Some groups suggested that thin oxides placed at field nodes provide the lowest

threshold, while others argued that thick oxides at antinodes are the correct approach. The
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disparity in answers is largely due to an incomplete understanding of the optical physics

related to the aperture, or, more precisely, the aperture/cavity optical system. In an attempt

to understand the physics, several models have been created, all with different approaches

to the problem. However none of these models provide a comprehensive description of the

optical fields, and no clear, consistent design guidance existed. In order to overcome these

limitations, we embarked on efforts to develop methods for modelling lasing modes of various

VCSEL structures.

Two sets of simulation codes were developed to aid in ultra-low threshold VCSEL design.

The first of these, the Weighted Index Method with Parasitics (WIMP), is a semi-analytic

hybrid vector-scalar code. As such, it was designed to be implemented on relatively standard

computing platforms. Indeed, the source code that our group uses was written in Visual

Fortran for the Microsoft Windows (XP, ME, or 9x) platforms, and it doesn’t require unrea-

sonably heavy duty computing power (large RAM or CPU requirements, for example). The

only inflexible portions of the code at this point in time are the usage of bundled numerical

library routines from the International Mathematical and Statistical Libraries (IMSL) suite

of software codes. These library routines perform such functions as complex root finding,

calculation of Bessel functions, and numerical integration and differentiation. Typical run

times for problems seeking to find the first few roots of an oxide aperture VCSEL of typical

dimensions (etched post of ≈ 20µm diameter, oxide aperture diameter of ≈ 5µm) usually

run less than 10 minutes on a Pentium 4 1-GHz CPU platform. Drawbacks and limitations

of this method will be explained in the later section detailing simulation results.

The second method used for simulation of etched-post and oxide aperture VCSELs is

the Vector Finite Element Method (VFEM). Unlike WIMP, this is a numerically intensive

method due to the meshing of potentially hundreds of layers forming an oxide aperture VC-

SEL, and also due to the fact that the basis elements are vector and not scalar in nature.

Indeed, as will be shown later, a set of 14 basis vector functions (6 node based, 6 edge based,

and 2 face based) were chosen for this model. Physical RAM computing requirements dic-

tated that these simulations be performed at the Major Shared Resources Center (MSRC), a

high-performance computing center collocated at Wright Patterson AFB. For typical oxide-

apertured or etched-post VCSEL structures, the RAM required was typically on the order

of 1-3 GBytes. Present day high performance desktop stations, however, may be able to

implement this code without undue strain. Even though this is a computationally intensive
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method, this model has the distinct advantage that it calculates the total optical loss, in-

cluding diffraction. As it is a model based on a variatonal solution of the vector Helmholtz

equation, its results not only allow for direct calculation of lasing mode parameters, but also

for deeper insight into the underlying physics associated with VCSEL design parameters.

In the sections that follow, these methods, as well as their applications (and limitations!)

to VCSEL design will be detailed. Furthermore, a section that describes an analytic solution

for the problem of graded interfaces between two slab media of constant refractive indices

will also be presented. This solution is very applicable to low-threshold VCSEL structures,

as much of the wasted power in driving such a device comes from trying to pass current

through heterointerfaces. The use of material grading helps to overcome much of this waste,

but subsequent optical design of the cavity is then complicated by these graded layers.

Weighted Index Method with Parasitics (WIMP)

One goal of vertical cavity surface emitting laser (VCSEL) design is to reduce or even

eliminate the threshold current. In relatively large devices, the threshold current is pro-

portional to the volume of the electrically-pumped active region. Since the longitudinal

dimension of this volume is fixed by the thickness of the active quantum wells, attention has

focused on transverse current confinement. Both etched-post and oxide-apertured structures

have been introduced in an effort to restrict the current path, and threshold currents have

declined accordingly [4–6]. It is important to realize, however, that these lateral patterning

techniques will also affect the transverse optical confinement. As the transverse dimensions

shrink to the order of the lasing wavelength—about 1 micron—two optical microcavity ef-

fects emerge. First, the spatial profile of each cavity mode changes from a plane wave to

a true three-dimensionally-confined waveguide mode. This change alters both the modal

reflectivity of the DBR mirrors and the modal overlap with the active region (the transverse

optical confinement factor). Second, the energy spacing between transverse modes increases

sharply.

Both of these optical microcavity effects could significantly influence the VCSEL threshold

current, either for good or ill. As the cavity shrinks, changes in the modal DBR reflectivity

and the transverse optical confinement factor will modify the lasing mode threshold gain.

If the threshold gain increases beyond the reach of the quantum wells, the structure will
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not lase. Conversely, if the threshold gain remains relatively constant, microcavity VCSELs

will lase, and the small cavity volume will result in a low threshold current. In this case,

the second microcavity effect should act to reduce the threshold current even further: as

the energy spacing between modes increases, fewer nonlasing modes exist within the gain

bandwidth, and therefore fewer carriers recombine via nonlasing modes. These submicron

VCSELs would lase at some of the lowest currents possible in semiconductor lasers, making

them attractive for system applications. They would also exhibit a variety of quantum elec-

trodynamic effects, making them attractive for basic laser research [7–9]. Since fabricating

submicron VCSELs is difficult and expensive, it is desirable to prove the effort worthwhile

by first calculating the lasing thresholds of these devices.

Unfortunately, the bound and radiative electromagnetic modes of both etched-post and

oxide-apertured VCSEL cavities are extremely difficult to calculate. Brute-force numerical

methods, such as finite-difference and finite-element, are more difficult in dielectric structures

than in metal-clad waveguides since it is no longer possible to set selected field components

equal to zero at the boundaries. Absorbing boundary conditions must be introduced or the

structure must be placed inside a very large, perfectly-conducting enclosure. Furthermore, in

lasing mode calculations we must solve for the threshold material gain in the active region,

meaning that the dielectric profile of the structure itself is one of the unknowns. These

structural unknowns are difficult to address using numerical techniques.

Often it is better to address problems with unknown structural parameters through an-

alytic calculations, where the solutions are expanded in terms of an infinite set of special

functions and the expansion coefficients are determined by boundary conditions. But this

technique works well only when the refractive index profile separates in some preferred co-

ordinate system, reducing the infinite expansions to a single term. If, as in realistic VCSEL

structures, the refractive index profile does not separate in any coordinate system, then

simple single-term special-function solutions to the governing partial differential equations

do not represent exact solutions for the modes and analytic methods become quite cumber-

some. Despite this difficulty, most previous analytic calculations have introduced, at some

point in the treatment, a single product term to describe a particular electromagnetic field

component [10, 11]. It is vital to realize that this is equivalent to assuming the underlying

differential equation separates.

Since separable descriptions facilitate closed-form expressions, rapid calculation, and com-
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parison with well-understood “textbook” problems, there is considerable motivation to im-

prove and justify them. In this paper we generalize the weighted index method (WIM)—a

separable approximation—to compute cavity modes in cylindrically-symmetric dielectric

VCSEL structures. We calculate the electric and magnetic vector potentials and use these

to compute the resulting fields. We also show, using the calculus of variations, that this

technique provides the best separable solution to the scalar Helmholtz equation. The method

allows us to approximate the spatial profile, optical confinement factor, resonant frequency,

and threshold material gain of cavity modes in both oxide-apertured and etched-post VC-

SELs. The method explicitly considers complex media, allowing us to include free carrier

losses. We start by summarizing the essential vector field equations needed to address VC-

SEL modes. Next we derive the WIM and outline its application to cylindrically-symmetric

VCSEL structures. We then derive weighted boundary conditions needed to apply the

method in piecewise-constant index profiles. Next, we outline the iterative procedure for

solving the resulting equations. Finally we apply the method to oxide-apertured and etched-

post VCSELs, computing field profiles, optical confinement factors, resonant wavelengths,

and threshold material gains for several cavity modes. A summary of these results is then

presented.

We want to find the electric
(

~E
)

and magnetic
(

~H
)

field profiles, the resonant wavelength

(λ), and the threshold material gain (gth) for each cavity mode in azimuthally-symmetric

VCSEL structures. For this we must solve a vector-wave equation subject to appropriate

boundary conditions at each interface. Because there are several equivalent electromagnetic

descriptions of any system, we can write wave equations for the electric and magnetic fields,

scalar potentials, or vector potentials. The most powerful and convenient method for this

problem is to solve for the magnetic
(

~A
)

and electric
(

~F
)

vector potentials and use them

to compute the fields. The steady-state, time-harmonic vector potentials ~A and ~F satisfy

the three-dimensional vector Helmholtz equation (in Gaussian units)

{
∇2 +

ω2

c2
ε(ρ, z)

}



~A(ρ, φ, z)

~F (ρ, φ, z)



 = 0. (1)

Here ~A and ~F depend on time as eiωt, ω = 2πc/λ, and we have assumed a cylindrically-

symmetric, complex dielectric function ε. Note that

√
ε = N ≡ n + iκ, (2)
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where N is the (complex) refractive index; material gain is incorporated by taking κ positive

in the active region. We assume µ = 1 in all regions.

The power of the vector potential approach comes from the fact that we need only Fz to

generate transverse electric (TE) modes and only Az to generate transverse magnetic (TM)

modes[12]. Since an arbitrary electromagnetic field can be represented as a superposition of

TE and TM modes, we need only solve for the two unknown scalar functions Az and Fz, a

dramatic simplification over solving Eq. 1 for all six vector components. The electric and

magnetic fields themselves may be computed directly from the z components of the vector

potentials via [13]

~E = − ic

ωε
∇×∇× (ẑAz) − ∇× (ẑFz), (3)

~H = ∇× (ẑAz) − ic

ωµ
∇×∇× (ẑFz), (4)

or, more explicitly,

Eρ(ρ, z) = − ic

ωε

∂2

∂ρ∂z
Az(ρ, z)− 1

ρ

∂

∂φ
Fz(ρ, z), (5)

Eφ(ρ, z) = − ic

ωερ

∂2

∂φ∂z
Az(ρ, z) +

∂

∂ρ
Fz(ρ, z), (6)

Ez(ρ, z) =
ic

ωε

{
∂2

∂ρ2
+

1

ρ

∂

∂ρ
− m2

ρ2

}
Az(ρ, z), (7)

Hρ(ρ, z) =
1

ρ

∂

∂φ
Az(ρ, z)− ic

ωµ

∂2

∂ρ∂z
Fz(ρ, z), (8)

Hφ(ρ, z) = − ∂

∂ρ
Az(ρ, z)− ic

ωµρ

∂2

∂φ∂z
Fz(ρ, z), (9)

Hz(ρ, z) =
ic

ωµ

{
∂2

∂ρ2
+

1

ρ

∂

∂ρ
− m2

ρ2

}
Fz(ρ, z). (10)

Since all solutions to Eq 1 are separable in the azimuthal coordinate φ, depending on it

as eimφ, the differential equation for Az and Fz is quite simple. By expressing ~A and ~F in

cylindrical coordinates and inserting the appropriate φ dependence into Eq 1, we have

{
∂2

∂ρ2
+

1

ρ

∂

∂ρ
+

∂2

∂z2
+

(
ω2

c2
ε(ρ, z)− m2

ρ2

)} 



Az(ρ, z)

Fz(ρ, z)



 = 0. (11)

In separable geometries, the two-dimensional, azimuthally-symmetric scalar Helmholtz

equation (11) may be solved exactly by separation of variables, yielding the potential pro-

files, resonant wavelength, and threshold material gain for each cavity mode. Realistic
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VCSEL structures, however, are not separable, greatly complicating the solution of (11).

An exact semianalytic solution could be obtained by expanding Az and Fz in terms of the

general solutions in each region, then matching boundary conditions to determine the (in-

finite) set of expansion coefficients. In practice this technique requires considerable care to

implement, though it does have the advantage of incorporating non-separable behavior in

the solutions [14]. Below, we present an alternative technique to generate the best separable

approximations to (11).

Equation (11) represents two uncoupled partial differential equations—one each for Az

and Fz—which are quite difficult to solve. For separable geometries, we can exactly replace

each equation in (11) with two independent ordinary differential equations, and these can

be solved exactly. For non-separable geometries, we approximate the solutions to (11). In

general, there are two possible approximation techniques. The most common approach is

to maintain the exact equations (11) and construct an approximate function that “almost”

solves them. An alternative approach is to replace the exact equations (11) with approximate

equations, and solve these approximate equation exactly. We take the latter approach, and

approximate each equation in (11) with two coupled ordinary differential equations. We

accomplish this by extending the WIM—which was first developed to calculate waveguide

modes in horizontal-cavity ridge-waveguide lasers [15, 16]— to address the eigenmodes of

cylindrical cavities. This technique has the advantage of giving the best separable solution to

(11) in the variational sense, and allows us to estimate the field profile, optical confinement

factor, resonant wavelength, and threshold material gain of each cavity mode. Below we

derive the WIM equations.

Proceeding as if separable solutions to (11) exist, we take

Az(ρ, z) = P (ρ)Q(z),

Fz(ρ, z) = R(ρ)S(z).

(12)

Substituting either of these into (11) gives

ζ ′′(ρ)ξ(z) +
1

ρ
ζ ′(ρ)ξ(z) + ζ(ρ)ξ′′(z) +

(
ω2

c2
ε(ρ, z)− m2

ρ2

)
ζ(ρ)ξ(z) = 0, (13)

where ζ = P or R and ξ = Q or S. For each potential in (12), we can separate the

resulting equation (13) by integrating it against ζ∗(ρ) or ξ∗(z). This procedure yields the
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axial equation

ξ′′(z) +
(
βα

eff (z)
)2

ξ(z) = 0 (14)

and the radial equation

ζ ′′(ρ) +
1

ρ
ζ ′(ρ) +

[(
kα

eff (ρ)
)2 − m2

ρ2

]
ζ(ρ) = 0 (15)

for each potential. These axial and radial equations are coupled by the weighted axial and

radial propagation constants, given respectively by

(
βα

eff (z)
)2 ≡ (ω2/c2)〈 ζ | ε(ρ, z) | ζ 〉+ 〈 ζ | ζ ′′ 〉+ 〈 ζ | ρ−1 | ζ ′ 〉 −m2〈 ζ | ρ−2 | ζ 〉

〈 ζ | ζ 〉 (16)

and
(
kα

eff (ρ)
)2 ≡ (ω2/c2)〈 ξ | ε(ρ, z) | ξ 〉+ 〈 ξ | ξ′′ 〉

〈 ξ | ξ 〉 . (17)

Here 〈 | 〉 denotes an inner-product over z or ρ, respectively defined by

〈A(z) |B(z) 〉 =

∫ ∞

−∞
A∗(z)B(z) dz (18)

and

〈A(ρ) |B(ρ) 〉 =

∫ ∞

0

A∗(ρ)B(ρ)ρ dρ. (19)

Since the weighted propagation constants depend on whether we solve for Az or Fz, we

have introduced an additional superscript α = TE or TM to distinguish between TE modes

resulting from Fz (involving averages over ζ = R and ξ = S) and TM modes resulting from

Az (involving averages over ζ = P and ξ = Q). Coupling occurs only between the radial and

axial equations for a given vector potential Az or Fz: the two potentials remain uncoupled

in (14) and (15). But Az and Fz will be coupled later by boundary conditions when we solve

for hybrid modes.

We must now find the solutions of (14) and (15) in piecewise-constant refractive index

profiles, paying particular attention to the interfacial boundary conditions. A sample struc-

ture is shown in Fig. 2. Since we will work exclusively with piecewise-constant geometries,

we simplify our notation by taking ε(ρ, z) → εi,j, where i and j index the radial and axial

regions, respectively. Thus we also have kα
eff (ρ) → kα

i and βα
eff (z) → βα

j , and (14) and (15)

reduce, respectively, to the one-dimensional Helmholtz equation and Bessel’s equation.

To solve these equations subject to the refractive index profile εi,j of etched-post or

oxide-apertured VCSEL structures, we must supplement (14) and (15) with an appropriate
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FIG. 2: Illustration of piecewise constant permittivity notation for an axially symmetric VCSEL.

set of interface and endpoint boundary conditions. The interfacial boundary conditions

are the usual continuity requirements on the normal and tangential components of various

electromagnetic fields. Therefore we cannot directly enforce boundary conditions on P , Q,

R, and S, but must perform the intermediate step of computing the electric and magnetic

fields via (5)–(10). Furthermore, since the underlying partial differential equations (11) do

not separate, these boundary conditions cannot be satisfied at all points on the boundary

surfaces–if they could, (11) would be separable.

In preparation for generating approximate boundary conditions, we rewrite the weighted

index formulas (16) and (17). By integrating (15) against ζ∗(ρ) we have

〈 ζ | ζ ′′ 〉+ 〈 ζ | ρ−1 | ζ ′ 〉 −m2〈 ζ | ρ−2 | ζ 〉 = −〈 ζ | (kα
i )2 | ζ 〉, (20)

allowing us to express (16) as

(
βα

j

)2
=

(ω2/c2)〈 ζ | εi,j | ζ 〉 − 〈 ζ | (kα
i )2 |ζ 〉

〈 ζ | ζ 〉 ≡ ω2

c2
〈εα

ζ,j〉 − 〈kα〉2, (21)

where

〈εα
ζ,j〉 ≡

〈 ζ | εi,j | ζ 〉
〈 ζ | ζ 〉 and 〈kα〉 ≡

√
〈 ζ | (kα

i )2 | ζ 〉
〈 ζ | ζ 〉 . (22)

Similarly, by integrating (14) against ξ∗(z) we find

〈 ξ | ξ′′ 〉 = −〈 ξ | (βα
j )2 |ξ 〉, (23)

allowing us to express (17) as

(kα
i )2 =

(ω2/c2)〈 ξ | εi,j | ξ 〉 − 〈 ξ | (βα
j )2 |ξ 〉

〈 ξ | ξ 〉 ≡ ω2

c2
〈εα

i,ξ 〉 − 〈βα〉2, (24)
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where

〈εα
i,ξ 〉 ≡

〈 ξ | εi,j | ξ 〉
〈 ξ | ξ 〉 and 〈βα〉 ≡

√
〈 ξ | (βα

j )2 | ξ 〉
〈 ξ | ξ 〉 . (25)

The compact expressions (21) and (24) allow us to compute weighted variables without using

the derivatives of ζ and ξ.

We specialize these expressions to VCSEL lasing modes by truncating the inner product

over z, replacing (18) with

〈A(z) |B(z) 〉 =

∫ zmax

zmin

A∗(z)B(z) dz, (26)

where zmin and zmax denote the lower and upper VCSEL boundary planes. This truncation

is necessary to force (24) to converge and reflects the assumption that most of the energy is

contained inside the VCSEL cavity. In contrast, we force the radial wavefunctions to decay

evanescently to zero—to find guided modes—and the inner product defined by (19) presents

no difficulty.

We now present boundary conditions and solutions for the axial and radial equations

(14) and (15). Recall that the unknowns in this formalism are, for each mode, the functions

P (ρ), Q(z), R(ρ),and S(z), the resonant frequency ω, and the threshold material gain in the

active region gth ≡ 4πκactive/λ.

We solve the axial equation (14) in piecewise constant geometries, such as in Fig. 3. The

general solutions of (14) are given in each axial region [zj, zj+1] by

Qj(z) = aTM
j eiβTM

j z + bTM
j e−iβTM

j z,

Sj(z) = aTE
j eiβTE

j z + bTE
j e−iβTE

j z,

(27)

where we explicitly denote both the TE and TM solutions for clarity. Using the iterative so-

lution procedure described below, we compute βTE
j and βTM

j from (21); assume for now that

they are known constants. These solutions must be joined at each interface zj by matching

the tangential electric and magnetic fields. Inserting (12) into (5)–(10), we compute these

14
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FIG. 3: Illustration of weighted permittivity profile for the WIM axial solution.

tangential field components as

Eρ(ρ, z) = − ic

ωε
P ′(ρ)Q′(z)− im

ρ
R(ρ)S(z), (28)

Eφ(ρ, z) =
cm

ωερ
P (ρ)Q′(z) + R′(ρ)S(z), (29)

Hρ(ρ, z) =
im

ρ
P (ρ)Q(z)− ic

ωµ
R′(ρ)S ′(z), (30)

Hφ(ρ, z) = −P ′(ρ)Q(z) +
cm

ωµρ
R(ρ)S ′(z). (31)

We consider, in turn, two distinct cases: m = 0 and m 6= 0.

When m = 0 we can match boundary conditions with Q = 0 (pure TE modes) or

S = 0 (pure TM modes). For these modes, it is sufficient to force just two tangential

field components to be continuous: demanding continuity of the other two components gives

redundant conditions. For TE modes we require Eφ and Hρ to be continuous; for TM modes

we require Eρ and Hφ to be continuous. As we will see below, for pure TE and TM modes

the fields themselves, and not just the vector potentials, are separable. This makes it easy

to generate weighted boundary conditions for these modes.

For pure TE modes, we have

Eφ(ρ, z) = R′(ρ)S(z), (32)

Hρ(ρ, z) = − ic

ωµ
R′(ρ)S ′(z). (33)
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Since we assume µ = 1 in all regions, both Eφ and Hρ depend on z only via S(z) and S ′(z),

respectively. Therefore we can force both tangential fields to be continuous by setting S(z)

and S ′(z) continuous across each interface.

For pure TM modes, on the other hand, we have

Eρ(ρ, z) = − ic

ωε
P ′(ρ)Q′(z), (34)

Hφ(ρ, z) = P ′(ρ)Q(z). (35)

Again, we can make Hφ continuous by forcing Q(z) to be continuous across each interface.

However, Eρ depends on z through both Q′(z) and ε. Since ε is not a separable function

of z and ρ, we must weight the relative permittivity to obtain average boundary conditions

holding for all ρ. Therefore we require Q′(z)/〈εTM
P 〉 to be continuous at each interface,

where 〈εTM
P,j 〉 has already been defined in each region by (25). (We could also have generated

average boundary conditions using 〈1
ε
〉, but this approach gave inferior results.)

Inserting the functional forms (27) and applying the continuity conditions for either α =

TE or α = TM modes, we relate aα
j , bα

j to aα
j+1, bα

j+1 at each axial boundary z = zj through

the transfer matrices

Lα
j


 aα

j

bα
j


 = Rα

j


 aα

j+1

bα
j+1


 , (36)

where

LTE
j ≡


 eiβTE

j zj e−iβTE
j zj

iβTE
j eiβTE

j zj −iβTE
j e−iβTE

j zj


 , RTE

j ≡

 eiβTE

j+1zj e−iβTE
j+1zj

iβTE
j+1e

iβTE
j+1zj −iβTE

j+1e
−iβTE

j+1zj


 , (37)

LTM
j ≡


 eiβTM

j zj e−iβTM
j zj

iβTM
j

〈εTM
P,j 〉

eiβTM
j zj

−iβTM
j

〈εTM
P,j 〉

e−iβTM
j zj


 , RTM

j ≡

 eiβTM

j+1 zj e−iβTM
j+1zj

iβTM
j+1

〈εTM
P,j+1〉

eiβTM
j+1zj

−iβTM
j+1

〈εTM
P,j+1〉

e−iβTM
j+1 zj


 . (38)

The composite transfer matrix [Tα] for the whole system is formed by cascading the indi-

vidual transfer matrices, giving

[Tα] = [Lα
1 ]−1[Rα

1 ][Lα
2 ]−1[Rα

2 ][Lα
3 ]−1[Rα

3 ] · · · [Lα
N−1]

−1[Rα
N−1], (39)

where N is the number of axial regions (including substrate and air) in the problem geometry.

Thus we relate the unknown coefficients in the j = 1 region (substrate) to the coefficients

in the j = N region (air) via

 aα

1

bα
1


 =


 tα11 tα12

tα21 tα22





 aα

N

bα
N


 . (40)
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Since we are searching for axially-emitting (lasing) modes, we permit only outgoing radiation

by setting

bα
1 = aα

N = 0. (41)

Finally, substituting (41) into (40) we obtain the axial threshold condition

tα22(ω, κactive) = 0. (42)

Setting the real and imaginary parts of tα22 equal to zero gives two independent equations

that we solve to obtain the modal frequency ω = 2πc/λ and threshold material gain gth =

4πκactive/λ for pure TE and TM modes. The expansion coefficients aα
j and bα

j for each region

are found by back substitution through (40) and (36).

In order to generate sensible boundary conditions when m 6= 0, we must construct hybrid

modes in which both S and Q nonzero. In this case none of the tangential fields are separable,

since each has both TE and TM parts. Each TE and TM part is, in turn, a sum of cylindrical

wave terms like eimφJm(kρ)eiβz (P and R will turn out to be Bessel functions). An exact

solution would require us to include a superposition of cylindrical waves involving all values

of k, and the boundary conditions would couple all terms at each interface. Fortunately, the

coupling between cylindrical waves with different k is small enough to ignore [14, 17, 18].

Therefore we simultaneously and independently enforce the continuity of the TE and TM

mode components of each tangential field, and our hybrid mode boundary conditions become

the same as those for pure TE and TM modes.

We solve the radial equation (15) in piecewise constant geometries, such as in Fig. 4.

The general solutions of (15) are given in each radial region [ρi, ρi+1] by

Pi(ρ) =





cTM
i Jm(kTM

i ρ) + dTM
i Ym(kTM

i ρ) i 6= M

cTM
M Km(ikTM

M ρ) + dTM
M Im(ikTM

M ρ) i = M
,

Ri(ρ) =





cTE
i Jm(kTE

i ρ) + dTE
i Ym(kTE

i ρ) i 6= M

cTE
M Km(ikTE

M ρ) + dTE
M Im(ikTE

M ρ) i = M
,

(43)

where Jm and Ym are m-th order Bessel functions of the first and second kind, Im and Km

are modified m-th order Bessel functions of the first and second kind, and i = 1, 2, . . . , M

indexes the inner to outer radial regions. Using the iterative solution procedure described

later, we compute kTE
i and kTM

i from (24); assume for now that they are known constants.
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FIG. 4: Illustration of weighted permittivity profile for the WIM radial solution.

These solutions must be joined at each interface ρj by matching tangential electric and

magnetic fields. Inserting (12) into (5)–(10) we compute these tangential field components

as

Ez(ρ, z) = − ic

ωε

(
kTM

i

)2
P (ρ)Q(z), (44)

Eφ(ρ, z) =
cm

ωερ
P (ρ)Q′(z) + R′(ρ)S(z), (45)

Hz(ρ, z) = − ic

ωµ

(
kTE

i

)2
R(ρ)S(z), (46)

Hφ(ρ, z) = −P ′(ρ)Q(z) +
cm

ωµρ
R(ρ)S ′(z). (47)

We consider, in turn, the distinct cases m = 0 and m 6= 0.

As in the axial problem, when m = 0 we can match boundary conditions with P = 0

(pure TE modes) or R = 0 (pure TM modes), and it is sufficient to force just two tangential

field components to be continuous. For TE modes we require Eφ and Hz to be continuous;

for TM modes we require Ez and Hφ to be continuous. Following the same arguments as in

the axial problem, we construct weighted boundary conditions to require the continuity of

(
kTE

i

)2
R(ρ) and R′(ρ) (for TE modes), (48)

(
kTM

i

)2

〈εTM
Q 〉 P (ρ) and P ′(ρ) (for TM modes), (49)
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at each radial interface ρ = ρi. To generate radial boundary conditions independent of z,

we have replaced εi,j by the weighted permittivity 〈εTM
i,Q 〉 defined in ( 25).

Inserting the functional forms (43) and applying the continuity conditions for either α =

TE or TM modes, we relate cα
i , dα

i to cα
i+1, dα

i+1 at each radial boundary ρ = ρi through the

transfer matrices

Aα
i


 cα

i

dα
i


 = Bα

i


 cα

i+1

dα
i+1


 , (50)

where

ATE
i ≡




(
kTE

i

)2
Jm(kTE

i ρi)
(
kTE

i

)2
Ym(kTE

i ρi)

kTE
i J ′m(kTE

i ρi) kTE
i Y ′

m(kTE
i ρi)


 , (51)

BTE
i ≡




(
kTE

i+1

)2
Ξm(γkTE

i+1ρi)
(
kTE

i+1

)2
Πm(γkTE

i+1ρi)

γkTE
i+1Ξ

′
m(γkTE

i+1ρi) γkTE
i+1Π

′
m(γkTE

i+1ρi)


 , (52)

ATM
i ≡




(kTM
i )

2

〈εTM
i,Q 〉 Jm(kTM

i ρi)
(kTM

i )
2

〈εTM
i,Q 〉 Ym(kTM

i ρi)

kTM
i J ′m(kTM

i ρi) kTM
i Y ′

m(kTM
i ρi)


 , (53)

BTE
i ≡




(kTM
i+1 )

2

〈εTM
i+1,Q〉

Ξm(γkTM
i+1 ρi)

(kTM
i+1 )

2

〈εTM
i+1,Q〉

Πm(γkTM
i+1 ρi)

γkTM
i+1 Ξ′m(γkTM

i+1 ρi) γkTM
i+1 Π′

m(γkTM
i+1 ρi)


 . (54)

Here we have defined

γ =





1 inner regions
√−1 outer region



 , Ξm =





Jm inner regions

Km outer region



 , Πm =





Ym inner regions

Im outer region



 .

(55)

As in (39), we form a composite system matrix

[Uα] ≡ [Aα
1 ]−1[Bα

1 ][Aα
2 ]−1[Bα

2 ][Aα
3 ]−1[Bα

3 ] · · · [Aα
M−1]

−1[Bα
M−1] (56)

relating the unknown coefficients in the i = 1 region (core) to the coefficients in the i = M

region (cladding) via 
 cα

1

dα
1


 =


 uα

11 uα
12

uα
21 uα

22





 cα

M

dα
M


 . (57)

Since we are searching for longitudinally-propagating, laterally-confined VCSEL modes we

force regularity at the origin and exponential decay as ρ →∞ by setting

dα
1 = dα

M = 0. (58)
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Finally, substituting (58) into (57) we obtain the radial threshold condition

uα
21(ω, κactive) = 0. (59)

In order to generate sensible boundary conditions when m 6= 0, we must construct hybrid

modes in which both R and P are nonzero. Again, none of the tangential field components

are separable and it is impossible to match them for all z at a radial interface. Further-

more, if we mirror our axial treatment and independently force the TE and TM components

to be continuous we generate an inconsistent boundary condition. For example, indepen-

dently forcing Ez and the TM part of Eφ to be continuous requires
(
kTM

i

)2
P (ρ)/〈εTM

Q 〉 and

P (ρ)/〈εTM
Q 〉 be continuous at each interface. But this forces kTM

i itself to be continuous,

which is absurd. We cannot hope to work with TE and TM modes independently. Therefore

we approximate our problem with an equivalent cylindrical dielectric waveguide problem,

which admits analytic solutions for hybrid modes. These approximations are used only to

generate boundary conditions, not as a substitution for the actual radial and axial solutions

in each region.

Cylindrical waveguide modes depend on z as eiβz or e−iβz. Our fields, in contrast, depend

on z via (27). There are two differences we must overcome. First, cylindrical waveguide

modes are characterized by a single axial propagation constant β, whereas our fields have a

different axial propagation constant βa
j for each axial region and polarization. We can easily

remedy this by replacing βa
j with 〈βα〉, as defined in (25). Second, cylindrical waveguide

modes depend on z as either eiβz or e−iβz. But even after replacing βa
j with 〈βα〉 our fields

have a different linear combination of ei〈βα〉z and e−i〈βα〉z in each region, depending on the

relative values of aα
j and bα

j . Therefore, for the purpose of constructing boundary conditions,

we assume that the fields approximate a “pure” standing wave in the axial direction, with

aTE
j = bTE

j and aTM
j = −bTM

j . (60)

We assume further that aTE
j ≈ aTM

j , and approximate the z-dependence of our fields as

Q̃(z) ≡ sin(〈βTM〉z),

S̃(z) ≡ cos(〈βTE〉z).

(61)
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Substituting (61) into (45) and (47), we approximate the φ̂ field components as

Ẽφ(ρ, z) =
cm

ω〈εTM
Q 〉ρP (ρ)Q̃′(z) + R′(ρ)S̃(z),

≈
{

cm〈βTM〉
ω〈εTM

Q 〉ρ P (ρ) + R′(ρ)

}
cos (〈β〉z) (62)

and

H̃φ(ρ, z) = −P ′(ρ)Q̃(z) +
cm

ωρ
R(ρ)S̃ ′(z),

≈
{
−P ′(ρ)− cm〈βTE〉

ωρ
R(ρ)

}
sin (〈β〉z) . (63)

Here we have replaced εi,j by the appropriate weighted value, and have selectively assumed

〈βTE〉 ≈ 〈βTM〉 ≈ 〈β〉 to factor out the z dependence. Through a-posteriori comparison

with our calculated results, we find all these assumptions well justified.

These approximate expressions for Ẽφ and H̃φ are separable, as are expressions (44) and

(46) for Ez and Hz. Therefore we can immediately construct suitable boundary conditions

for radial hybrid modes by requiring the continuity of

(
kTM

i

)2

〈εTM
Q 〉 P (ρ), (64)

(
kTE

i

)2
R(ρ), (65)

cm〈βTM〉
ω〈εTM

Q 〉ρ P (ρ) + R′(ρ), (66)

and P ′(ρ) +
cm〈βTE〉

ωµ0ρ
R(ρ). (67)

By inserting the functional forms (43) and forcing all four of the above combinations to be

continuous, we link the unknown coefficients at each radial interface ρ = ρi through the 4×4

transfer matrix

Ai




cTM
i

dTM
i

cTE
i

dTE
i




= Bi




cTM
i+1

dTM
i+1

cTE
i+1

dTE
i+1




, (68)
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where

Ai ≡




(kTM
i )

2

〈εTM
i,Q 〉 Jm(kTM

i ρi)
(kTM

i )
2

〈εTM
i,Q 〉 Ym(kTM

i ρi) 0 0

0 0
(
kTE

i

)2
Jm(kTE

i ρi)
(
kTE

i

)2
Ym(kTE

i ρi)

cm〈βTM 〉
ω〈εTM

i,Q 〉ρ Jm(kTM
i ρi)

cm〈βTM 〉
ω〈εTM

i,Q 〉ρ Ym(kTM
i ρi) kTE

i J ′m(kTE
i ρi) kTE

i Y ′
m(kTE

i ρi)

kTM
i J ′m(kTM

i ρi) kTM
i Y ′

m(kTM
i ρi)

cm〈βTE〉
ωρ

Jm(kTE
i ρi)

cm〈βTE〉
ωρ

Jm(kTE
i ρi)




,

(69)

Bi ≡




(kTM
i+1 )

2

〈εTM
i+1,Q〉

Ξm(γkTM
i+1 ρi)

(kTM
i+1 )

2

〈εTM
i+1,Q〉

Πm(γkTM
i+1 ρi) 0 0

0 0
(
kTE

i+1

)2
Ξm(γkTE

i+1ρi)
(
kTE

i+1

)2
Πm(γkTE

i+1ρi)

cm〈βTM 〉
ω〈εTM

i+1,Q〉ρi
Ξm(γkTM

i+1 ρi)
cm〈βTM 〉

ω〈εTM
i+1,Q〉ρi

Πm(γkTM
i+1 ρi) γkTE

i+1Ξ
′
m(γkTE

i+1ρi) γkTE
i+1Π

′
m(γkTE

i+1ρi)

γkTM
i+1 Ξ′m(γkTM

i+1 ρi) γkTM
i+1 Π′

m(γkTM
i+1 ρi)

cm〈βTE〉
ωρi

Ξm(γkTE
i+1ρi)

cm〈βTE〉
ωρi

Πm(γkTE
i+1ρi)




.

(70)

These matrices are mathematically equivalent to those for a cylindrical dielectric waveguide.

Cascading the interface transfer matrices, we again derive a composite system transfer matrix




cTM
1

dTM
1

cTE
1

dTE
1




=




u11 u12 u13 u14

u21 u22 u23 u24

u31 u32 u33 u34

u41 u42 u43 u44







cTM
M

dTM
M

cTE
M

dTE
M




(71)

relating the innermost and outermost radial coefficients. The endpoint boundary conditions

(58) remain valid. Applying them to (71) and demanding nontrivial solutions gives the

hybrid threshold condition

∣∣∣∣∣∣
u21(ω, κactive) u23(ω, κactive)

u41(ω, κactive) u43(ω, κactive)

∣∣∣∣∣∣
= 0, (72)

which we solve in the complex plane for ω and κactive.

We compute the longitudinal and transverse mode spectrum by self-consistently solving

the radial and axial problems. The modes are specified by the longitudinal mode number,

the transverse mode number, and the azimuthal mode number m. Different longitudinal

modes correspond to successive roots of the axial threshold condition (42), while different

transverse modes correspond to successive roots of the radial threshold conditions (59) (for

TE/TM modes) or (72) (for hybrid modes). The energy spacing between longitudinal modes

is much greater than that between transverse modes. If we let n denote a generalized mode
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index corresponding to a particular TE, TM, or hybrid mode, then the explicit unknowns for

each mode are the vector potential functions Pn(ρ), Qn(z) and/or Rn(ρ), Sn(z), the optical

mode frequency ωn, and threshold values for (κactive)n. We iteratively solve the axial and

radial problems as follows.

First we focus attention on a particular family of modes by fixing m: for m = 0 we can

compute TE or TM modes, while for m > 0 only hybrid modes are possible. Then we solve

the axial problem, taking the effective indices equal to the corresponding values for εr1,j
in

the innermost radial region: this solution corresponds to the standard plane-wave calculation

appropriate for large-area devices. The ordered roots of the axial threshold condition (42)

yield initial approximations Qn0(z) and/or Sn0(z), ω
(axial)
n0 , and

(
κ

(axial)
active

)
n0

for the mode n0

of interest. For VCSEL lasing mode calculations we are only interested in the first root

of (42), corresponding to the fundamental longitudinal mode. We next compute the kα
i

by inserting Qn0(z) and/or Sn0(z) into (24), giving us enough information to address the

radial problem. Depending on whether we are solving for TE, TM or hybrid modes, we then

compute the roots of the radial threshold condition (59) or (72), yielding approximations for

Pn0(ρ) and/or Rn0(ρ), ω
(radial)
n0 , and

(
κ

(radial)
active

)
n0

: successive roots correspond to progressively

higher-order transverse modes. Then we alternate between solving the axial and radial

problems, always updating βα
j and kα

i by inserting the most recent wavefunctions into (21)

or (24) as appropriate. In this way we generate a self-consistent solution to the coupled

WIM equations (14) and (15), terminating when

ω(axial)
n0

= ω(radial)
n0

,
(
κ

(axial)
active

)
n0

=
(
κ

(radial)
active

)
n0

to within prescribed tolerance. The procedure converges quite rapidly, allowing us to solve

for a large number of cavity modes.

Finally, we note that the character of the modes found depends on both the differential

equations and on the endpoint boundary conditions enforced. The original application of the

WIM to rectangular waveguide geometries assumed propagating behavior in the ẑ direction

and evanescent decay in the x̂ and ŷ directions. These endpoint conditions resulted in a stan-

dard eigenvalue problem, with the longitudinal propagation constant β being the eigenvalue.

In this case, the Rayleigh-Ritz variational principle asserts that the resulting approximation

of β will be more accurate than the wavefunctions themselves. In our application, we have
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enforced evanescent decay in the radial direction and have permitted only outward propa-

gating waves in the ẑ direction. This constrains the mode frequency ω and the threshold

material gain κ , as opposed to the propagation constant β, and these unknown parameters

no longer appear as eigenvalues. Therefore the Rayleigh-Ritz principle has nothing to say

about the relative accuracy of ω and κ. Nevertheless, general variational principles dictate

that we have found the best separable solution, and therefore we expect the resulting values

for ω and κ to be reasonably accurate. Note that we could also have solved for radial lasing

modes by requiring evanescent decay in the axial direction and outward radial propagation,

though these would be difficult to approximate because of the infinite radial inner product.

In fact, as the cavity radius shrinks we do see evidence of radial propagation, as discussed

in the next section.

Using the methods described above, we calculate lasing modes in etched-post [19, 20]

and oxide-apertured [5, 21] devices fabricated from a λ =980 nm, 1.5λ-cavity VCSEL. The

VCSEL reflectors consist of a 17.5 period p-type GaAs/Al0.92Ga0.08As top Distributed Bragg

Reflector (DBR) for the oxide-apertured structure, and a 4 period GaAs/AlxO top DBR with

a λ/4 p+ GaAs contact layer for the post geometry. The bottom reflector in both struc-

tures is a 22 period n-type GaAs/Al0.92Ga0.08As DBR. The 1.5λ-cavity is step-tapered with

(intrinsic) layers of Al0.98Ga0.02As, Al0.65Ga0.35As, Al0.30Ga0.70As, and GaAs, culminating in

a single In0.2Ga0.8As quantum well. Both structures are grown on a GaAs substrate. The

etched-post structure, illustrated in Fig. 5, is formed by etching the top GaAs/AlAs DBR

down to the λ/4 GaAs contact layer, then oxidizing the AlAs layers. The oxide-apertured

structure, illustrated in Fig. 6, is formed by oxidizing the λ/4 Al.98Ga.02As layers in the

cavity. We model each region as a cylindrically-symmetric layer of constant refractive index,

assuming the material parameters in Table I. Free carrier losses are incorporated by taking

κi,j negative. Material gain is incorporated by taking κactive positive in the active quantum

well region.

The lowest frequency, or fundamental, VCSEL lasing mode is analogous to the HEM11

(or HE11) hybrid waveguide mode. Here the first and second subscripts refer respectively

to the azimuthal (m) and radial mode numbers. The HEM11 mode is the most plane-wave

like of all the propagating bound modes, despite containing both Ez and Hz [22, 23]. It

is also the only waveguide mode having a radial intensity distribution with a maximum at

the center. Following this terminology, we refer to the next higher-order VCSEL modes as
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FIG. 5: Quasi-3D plot of the etched-post VCSEL index profile.

HEM21, TE01, and TM01 modes: these modes make up the degenerate LP11 mode under the

“linear polarization” approximation [23]. All three of these modes feature a radial intensity

profile with a null at the center.

In Figs. 7 and 8 we plot the longitudinal field profile for sample etched-post and oxide-

apertured VCSELs. For the oxide-apertured structure, the top DBR is very long and the

fields penetrate deeply into the top DBR. Therefore the large index difference between

the semiconductor cavity and surrounding oxide is heavily weighted in (25), giving a large

discontinuity in 〈εα
ξ 〉 between the inner and outer radial regions. As a result, the fields
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FIG. 6: Quasi-3D plot of the oxide-apertured VCSEL index profile.

within the oxide-aperture VCSEL are tightly confined to the core. In contrast, for the

etched-post structure the large index contrast between top DBR layers allows very little

field penetration, resulting in a smaller effective index difference and a correspondingly less

confined field. In both structures, the fundamental mode is more confined than higher-order

modes, and smaller VCSELs exhibit less confinement than larger ones. These effects can

also be seen in the three-dimensional field intensity, given by [24]

I =
1

4

[
ε
∣∣∣ ~E

∣∣∣
2

+ µ
∣∣∣ ~H

∣∣∣
2
]

, (73)

which we plot in Figs. 9-10. The radial discontinuity in these figures is a measure of the
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TABLE I: Material Parameters used for WIM Simulations

Material Index Doping (1018 cm−3) Loss (cm−1)

In0.2Ga0.8As 3.5691 none N/A

GaAs 3.5256 none N/A

Al0.3Ga0.7As 3.3622 none N/A

Al0.65Ga0.35As 3.1637 none N/A

Al0.98Ga0.02As 2.9713 none N/A

AlxO 1.55 none N/A

n-GaAs 3.5256 2 10

n-Al0.92Ga0.08As 3.0067 2 10

p-GaAs 3.5256 1 11.5

p-Al0.92Ga0.08As 3.0067 1 11.5

p+-GaAs 3.5256 5 57.5

error in our solution. This error stems from our separable approximation.

The transverse confinement factor Γt is usually defined as

Γt =

∫
active

|E|2 ds∫ |E|2 ds
, (74)

where the integral in the numerator is over the transverse extent of the active region and the

integral in the denominator is over the entire transverse extent of the field. Figure 11 shows

estimates of the transverse confinement factor for the first two modes of the etched-post and

oxide-apertured VCSELs as a function of cavity radius. The estimates are generated from

(74), using E = E(ρ) → Ẽφ(ρ) for TE modes (see (62)) and E → H̃φ(ρ) for TM modes (see

(63)); for hybrid modes we use both Ẽφ(ρ) and H̃φ(ρ) and average the results. We use the

effective φ components since they are already averaged over z and are representative of the

total field intensity profile. As the cavity radius decreases, more of the field intensity leaks out

of the active region and the confinement factors drop monotonically. This behavior becomes

more pronounced for higher-order modes, as illustrated in Fig. 12. Our oxide-apertured de-

vices confine the optical mode more strongly to the active region and have higher transverse

confinement factors than our etched-post structures. But the larger rate of change in confine-
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FIG. 7: Index and standing intensity profile along the axial direction for a 1.4 µm radius etched-

post VCSEL.

ment factor for the etched-post VCSEL, as shown in 11, yields better modal discrimination

via Γt. For example, a 1 µm radius device has ∆Γt ≡ Γt(HEM11) − Γt(TE01) = 0.0759

for the etched-post VCSEL, compared to only 0.0379 for the oxide-apertured VCSEL. This

illustrates the effectiveness of employing a small radial index difference to introduce mode

selective losses and enhance single mode lasing [25].

In Figs. 13 and 14 we plot the resonant wavelengths as a function of cavity radius for

various modes in etched-post and oxide-apertured structures. The resonant wavelength blue-

shifts as the oxide or post diameter shrinks, a dramatic departure from plane-wave results.

This wavelength shift can be easily explained by examining the weighted dispersion relations

(21) and (24), both of which take the functional form

〈k2
ρ〉+ 〈β2

z 〉 =
ω2

c2
〈ε〉. (75)

Although both 〈k2
ρ〉 and 〈β2

z 〉 change slightly as the radius shrinks, 〈β2
z 〉 remains very close
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FIG. 8: Index and standing intensity profile along the axial direction for a 1.4 µm radius oxide-

apertured VCSEL.

to its plane-wave value. Therefore, as 〈k2
ρ〉 increases from its plane-wave value of zero, ω

increases, leading to the blue shift illustrated in Figs. 13 and 14 . This effect has been

previously estimated using simpler approximations [26], but the self-consistent WIM results

should be more accurate. To construct low-threshold microcavity VCSELs, the quantum

well emission peak must be matched to the blue-shifted cavity resonance of the desired lasing

mode.

The resonant wavelength changes more quickly with radius in oxide-apertured VCSELs

as compared with the etched-post structures. This occurs because the oxide-apertured

device exhibits a larger difference in effective index between the inner and outer radial

regions, resulting in a larger field confinement and a correspondingly larger value for 〈k2
ρ〉

in the waveguide core. As a result, the oxide-apertured structure provides more spectral

discrimination between the VCSEL resonant modes. For example, in a 1 µm VCSEL ∆λ ≡
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FIG. 9: HEM11 mode standing field intensity for a 1.4 µm radius etched-post VCSEL. The field

intensity on the top surface is amplified in order to illustrated the emitted mode.

λ(HEM11) − λ(TE01) = 68.9 Å for the oxide-apertured structure as compared to 59.8 Å

for the etched-post. This effect might be exploited by tailoring the spontaneous emission of

these devices to create lower threshold, higher efficiency devices.

Finally, we plot the components of the quasi-degenerate LP11 mode in Figure 15. The

results show a small, but non-zero, splitting of the mode for aperture radii <≈ 0.85 µm,

indicating where the LP mode approximation breaks down.

Within the WIM framework, we approximate the VCSEL cavity modes as superpositions
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FIG. 10: TE01 mode standing field intensity for a 1.4 µm radius oxide-apertured VCSEL. The

field intensity of the top surface is amplified in order to illustrated the emitted mode.

of cylindrical waves. Each of these, in turn, can be viewed as a superposition of TE and TM

plane waves propagating at an angle

〈θ〉 = arctan

( 〈kρ〉
〈βz〉

)
(76)

to the z axis. As the cavity radius decreases, the effective transverse propagation constant

〈kρ〉 increases for all modes and, consequently, the average angle of incidence for the compo-

nent plane waves impinging on each DBR interface increases. The power reflectivity for TE

waves increases monotonically with angle until the total internal reflection angle is reached,
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FIG. 11: Transverse confinement factor for the first two modes of the etched-post and oxide-

apertured VCSEL.

FIG. 12: Transverse confinement factor for the fundamental, and a few sample higher order modes

for the oxide-apertured VCSEL.

while the power reflectivity for TM waves decreases monotonically until the Brewster angle

is reached [27]. As a result, the TE wave components encounter more reflective DBR mirrors

as the cavity radius shrinks, while the TM wave components encounter less reflective DBRs:

Fig. 16 illustrates this behavior for the oxide-apertured structure. Therefore the TE wave

components require less threshold material gain, the TM wave components more, and the
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FIG. 13: Resonant wavelength for the first two modes of the etched-post and oxide-apertured

VCSEL.

FIG. 14: Resonant wavelength for the fundamental, and a few sample higher order modes for the

oxide-apertured VCSEL.

threshold gain for pure TE VCSEL modes decreases with cavity radius, while the threshold

gain for TM modes increases.

HEM modes contain both TE and TM wave components, approximately canceling out

the changing reflectivity effects. All of these trends are evident in Figs. 17-18, which show
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FIG. 15: Resonant wavelength for the components of the quasi-degenerate LP11 mode, illustrating

the point at which the degeneracy is broken.

FIG. 16: Top DBR reflectance for the TE and TM modes of the oxide-apertured VCSEL.
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FIG. 17: Theshold gain for the fundamental, and transverse electric and magnetic modes for the

etched-post VCSEL.

the threshold material gain gth ≡ 4πκactive/λ for the fundamental and several higher order

VCSEL transverse modes. These results agree with prior in-plane laser studies that show a

higher facet reflectance for TE than TM modes and a similar propagation constant (β) for

both TE and TM modes [17, 28–30]. For both VCSELs and in-plane lasers, these trends in

mirror reflectivity and the associated lasing threshold become more pronounced for higher-

order TE modes.

Based on the above arguments, we expect the TE mode thresholds to decrease monoton-

ically with cavity radius and the TM and HEM thresholds to increase monotonically. The

TM and HEM modes generally behave as expected in Figs. 17 and 19, but the TE mode

thresholds increase abruptly below a critical cavity radius. This increase results from a dif-

ferent effect—the loss of mode confinement as the cavity shrinks. Recall that the transverse

confinement factor Γt determines the strength of the coupling between a given cavity mode

and the active quantum well, and that Γt decreases monotonically with cavity radius for all

modes. As Γt decreases, the material gain must increase accordingly for the cavity mode to

reach threshold. At fairly large cavity radii this effect is dominated by the change in DBR
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FIG. 18: Theshold gain for the fundamental, and a few sample higher order hybrid modes for the

oxide-apertured VCSEL.

reflectivity, and the TE mode thresholds continue to decrease with cavity radius. But below

a critical cavity radius the modal confinement effect dominates, and the quantum well gain

must increase sharply for the cavity mode to reach threshold. Eventually the transverse

confinement becomes so weak that the cavity cannot support a radially-bound mode at all.

The radii at which our curves terminate in Figs. 17-18 indicate this “minimum” cavity size

for each optical mode. This size effect has been previously estimated by simpler calculations

[26], but the WIM values should be more accurate. Since our oxide-apertured structure con-

fines the fields better than the etched-post structure, it supports bound modes at smaller

cavity radii.

To summarize the WIMP formalism, we have presented an extremely general and rapid

technique for estimating the spatial profile, optical confinement factor, resonant frequency,

and threshold material gain of lasing modes in cylindrically-symmetric VCSEL geometries.

Variational principles dictate that this method will generate the best solution over the space

of all separable functions. We also expect, on variational grounds, that the “eigenvalues”

corresponding to each mode—the resonant frequency and threshold gain—will be more ac-
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FIG. 19: Theshold gain for the fundamental, and transverse electric and magnetic modes for the

oxide-apertured VCSEL.

curate than the wavefunction itself. Thus, among separable or single-term approximations

to the lasing modes this method should yield the best possible results. The fundamental

limitation to this technique is the base assumption of separability. Therefore non-separable

effects, such as mode divergence and possible parasitic diffraction losses, are not addressed.

We have applied the technique to oxide-apertured and etched-post VCSELs, predicting a

blue-shift of the lasing wavelength as the cavity radius shrinks. It is essential to incorporate

this blue shift when designing the optical cavity, since the lasing resonance must line up

precisely with the quantum well gain peak in order to minimize the threshold current. Our

calculations suggest that quantum well emission should be tuned to the first TE mode

cavity resonance, since this mode exhibits a decreasing threshold gain as the cavity radius

shrinks. However, below a critical cavity radius the threshold gain increases rapidly and

lasing becomes impossible. Our model can be used to investigate a variety of cavity designs

in an effort to minimize this critical radius, and thereby minimize the VCSEL threshold

current. In order to actually calculate this threshold current, it will be necessary to merge

this model with quantum well gain and emission models.
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WIMP Technology Transition Note

The WIMP simulation source code, along with bandstructure source code for quantum

well gain calculations and associated source code for predicting threshold currents as a func-

tion of oxide aperture diameter and other relevant device parameters, was transferred to CFD

Research Corporation (CFDRC), of Huntsville, Alabama. The vehicle for this technology

transfer was a Cooperative Research and Development Agreement (CRADA), formalized by

signatures from both parties in October, 2000. Under this agreement, AFRL/SND obtained

in return a licensed set of CFDRC’s bundled suite of simulation tools for semiconductor de-

vices (electrical, thermal, and optical modelling, as well as some MEMS capability). Since

this time, CFDRC was acquired by ESI Group on January 28, 2004. At the time of this

writing, many issues regarding customer support, DARPA commitments, and other respon-

sibilities of CFDRC were still being settled as a result of this merger. The ESI Group is

headquartered in Paris, with U.S. offices Huntsville, San Diego, and Columbia, Maryland.

Vector Finite Element Method (VFEM)

In this section, we present a quasi-exact finite element method (FEM) model for analyzing

the optical modes of microcavity VCSELs. This model, like the WIMP code describe in the

previous section, is also based on a variational solution of the vector Helmholtz equation in

microcavity geometries. The results of this model not only allow for direct calculation of

lasing mode parameters, but also a better understanding of the underlying physics associated

with VCSEL oxides.

To begin, we want to find the electric
(

~E
)

and magnetic
(

~H
)

field profiles, the resonant

wavelength ( λ0), and the threshold gain (gth) for each cavity mode in azimuthally-symmetric

VCSEL structures. For this we must solve Maxwell’s equations subject to appropriate

boundary conditions at each material interface. The steady-state, time-harmonic electric

field satisfies the vector Helmholtz equation (in MKS units)

∇× 1

µr

∇× ~E − k2
0εr

~E = −iωµ0
~J, (77)

where ~E, ~H, and the electric current ~J depend on time as eiωt (ω = 2πc/λ); ε0, µ0, and k0

are the free space permittivity, permeability, and propagation constant, respectively. It can

be shown [31] that a weak solution to (77) may be obtained by extremizing the functional
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J( ~E ) =

∫∫∫

Ω

1

µr

(
∇× ~E

)
·
(
∇× ~E

)
dv − k2

0

∫∫∫

Ω

εr
~E · ~E dv (78)

+iωµ0

∫∫

Γ

(
n̂× ~E

)
· ~H ds +

∫∫∫

Ω

~E · ~J dv.

(By extremize, we mean forcing δ J = 0, where δ is the variational operator.) Here Ω and Γ

are the problem domain and boundary, respectively. For azimuthally-symmetric structures,

the material parameters ( µr and εr ) are functions of ρ and z only, and we may separate out

the φ dependence in (78) by assuming

Eφ v cos (mφ) , (79)

and

Eρ, Ez v sin (mφ) , (80)

where m is the azimuthal mode number. For integer m, the integrals over φ = [0, 2π] yield

a constant factor which may be ignored, effectively reducing the dimension of the problem

from three to two. In addition, since different azimuthal modes are orthogonal, we may deal

with each value of m independently.

For lasing mode analysis, we set the source current ~J to zero, making (77) a source-free

eigenmode problem. By assuming perfect conducting boundary conditions
(
n̂ · ~E = 0

)
on

Γ, which we justify later, the surface integral in (78) drops out and we are left with

J( ~E ) =

∫∫

Ω

1

µr

(
∇× ~E

)
·
(
∇× ~E

)
dv − k2

0

∫∫

Ω

εr
~E · ~E dv. (81)

Here Ω represents the two-dimensional domain (of the VCSEL) over the ρ − z plane. Our

task is then to find the ~E field which extremizes (81). That is, we must find the ~E that

satisfies ∫∫

Ω

1

µr

(
∇× ~E

)
·
(
∇× δ ~E

)
dv − k2

0

∫∫

Ω

εr
~E · δ ~E dv = 0, (82)

for all field variations δ ~E. Equation (82) is a generalized eigenvalue problem,

S( ~E)−ξT ( ~E) = 0. (83)

The S and T operators are defined by

S(~Ψ) ≡
∫∫

Ω

1

µr

(
∇× ~Ψ

)
·
(
∇× δ~Ψ

)
dv, (84)
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and

T (~Ψ) ≡
∫∫

Ω

εr
~Ψ · δ~Ψ dv. (85)

The eigenvalue ξ is defined as

ξ ≡ k2
0 =

ω2

c2
. (86)

All the desired mode information may be found by solving (82). For each mode, the eigen-

value is the square of the (generally complex) free-space propagation constant, which is

related to the modal wavelength (λ0) (98) and the total optical loss or threshold gain (gth)

(102). The eigenvectors are simply the time-harmonic (vector) electric fields
(

~E
)

. We

approximate the solution to (82) using the finite element method.

The formalism developed thus far is general and could apply to any of several variational

approaches to solving Maxwell’s equations. We now narrow our attention to the finite

element method (FEM). In the finite element method, the solution to (82) is approximated

by limiting the space of admissible functions ~E to the linear superposition of a finite set

of basis functions (generally characterized by the fact that they are non-zero only over a

subdomain Ωe, the domain of mesh element e). In our vector FEM, we expand the fields

over a basis of vector functions [32],

~E =
N∑

i=1

xi
~ψi. (87)

Here N is the total number of basis functions in the expansion, xi are unknown coeffi-

cients, and ~ψi are the vector basis functions. These functions are second order node, edge,

and face element functions, given in Appendix . They are specifically designed to model

m = 1 modes. Substituting (87) into (82) and exchanging the order of summation and

integration yields

N∑
i=1

xi

{∫∫

Ω

1

µr

(
∇× ~ψi

)
·
(
∇× ~ψj

)
dv − k2

0

∫∫

Ω

εr
~ψi · ~ψj dv

}
= 0. (88)

Ensuring (88) holds for all ~ψj (same set of functions as ~ψi), ensures it will hold for any

linear superposition of ~ψj, the finite basis analogy of δ ~E. The N equations represented by

(88) are exactly (83)–(85) taken over a finite basis, written conveniently in linear algebra

notation as

SX−ξTX = 0, (89)
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FIG. 20: Sample finite element mesh for an oxide-apertured, oxide DBR VCSEL.

where,

si,j ≡
∫∫

Ω

1

µr

(
∇× ~ψi

)
·
(
∇× ~ψj

)
dv, (90)

ti,j ≡
∫∫

Ω

εr
~ψi · ~ψj dv, (91)

and the eigenvalue (ξ) definition (86) remains unchanged.

We define our basis set over a triangular mesh in the ρ − z plane, as illustrated in Fig.

20. By using (randomly shaped) triangular elements, we can accommodate general VCSEL

designs—including for example tapered oxides—and avoid creating an artificial, mesh-driven

predisposition to any given vector field component. Due to the form of our basis expansion

and the use of absorbing regions (discussed below), S and T will be very large (N ∼ 50, 000),

sparse, non-Hermitian matrices. As a result, special matrix techniques are required to solve

(89). In practice this is the most challenging part of the finite element solution, and certainly

the most time consuming. We chose to solve the eigenvalue problem using an iterative

Arnoldi algorithm [33, 34] with spectral transformation; this algorithm allows us to search

for “mildly complex” (e.g., Re(ξ) À Im(ξ)) eigenvalues over a given range of the real axis.
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By far the greatest potential error source in the finite element VCSEL analysis is mesh

termination. Due to the incomplete optical confinement of both the oxide apertures and

the VCSEL mirrors, the true domain of a VCSEL field solution extends to infinity in all

directions. Hence, an artificial mesh termination is required for FEM application. A prop-

erly designed mesh termination for this problem must mimic the unbounded nature of the

domain, eliminating non-physical reflections at the mesh edge. In addition, since the FEM

computational demand—both CPU time and memory—scales super-linearly with N, we pre-

fer to place our termination as close as possible to the primary domain of interest, thereby

minimizing the amount of “wasted” mesh space.

To terminate our mesh, we insert an artificial absorbing layer (AL) between the principle

problem (VCSEL) domain (ΩV ) and the problem boundary (Γ) [31]. This layer allows

us to use perfect conductor boundary conditions on Γ, as we assumed earlier, eliminating

the surface integral term in the variational form and dramatically simplifying the FEM

analysis. We define ΩV by a rectangular region in the ρ − z plane, bounded by the bottom

mirror-to-substrate plane (ΓB) and the top mirror-to-air plane (ΓT ) in the ẑ direction, and

the transverse lasing mode size (ΓS) in the ρ̂ direction. We determine ΓS a-posteriori, as

discussed below. We surround ΩV by the AL as illustrated in Fig. 21, where the AL domain

is the union of the top, side, and bottom AL regions (ΩAL = ΩT ∩ ΩS ∩ ΩB). Due to the

high reflectance of the distributed Bragg reflectors (DBRs), our main concern is absorbing

any radiation incident on the radial boundary ΓS. Therefore, we focus our analysis on the

radial AL (ΩS); the optimal axial AL design (ΩT and ΩB) falls out of the radial analysis as

we show explicitly later.

A basic requirement for minimizing reflection is that the impedance
(√

µ/ε
)

of the

absorbing layer in each region must match the radially adjacent VCSEL region. We enforce

this condition by defining the absorbing layer material parameters as 1

εAL
r,j (ρ) ≡ a(ρ)εr,j, and µAL

r,j (ρ) ≡ a(ρ)µr,j. (92)

Here εr,j and µr,j are the VCSEL material parameters in axial region j (defined by zj−1 <

1 Before choosing (92), we considered a diagonal anisotropic a(ρ) for a perfectly matched layer (PML) design
[35, 36]. However, we found that the extra degrees of freedom provided no advantage for absorbing general
outward propagating cylindrical waves of the form

(
H

(2)
m (kρ) eiβzeimφ

)
.
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FIG. 21: Illustration of the FEM VCSEL problem domain: ΩV is the VCSEL domain, and ΩS , ΩT ,

and ΩB are the side, top, and bottom absorbing layer (AL) domains, respectively. The VCSEL

and AL domains are separated by the boundaries ΓS , ΓT , and ΓB, and the entire problem domain

is bounded by the closed cylinder Γ.

z < zj) radially adjacent to the AL (e.g., just to the left of ΓS), and

a(ρ) ≡ 1− ib(ρ). (93)

The absorbing layer performance depends entirely on the function b(ρ). We arrive at

a suitable function b(ρ) through a detailed design optimization. First, we obtain a rough

estimate using an asymptotic description of the fields and reflections, as described in more

detail later. Then we fine-tune the layer by minimizing the exact reflection values as obtained

by a rigorous transfer matrix calculation.

To illustrate the application of the FEM for VCSELs, we analyze several versions of

a basic 870 nm oxide-apertured, oxide DBR VCSEL [37]. The VCSEL has five and a half

periods of Al0.3Ga0.7As/AlxOy in the bottom DBR and four in the top DBR. The cavity is 1λ

thick and contains a single 600 Å GaAs bulk gain region centered between two Al0.3Ga0.7As

barrier layers. A 300 Å AlAs layer is included in the top barrier to form an oxide aperture.

Although an actual oxide aperture formed in AlAs would have a square cross-section, we
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treat it as circular to maintain the azimuthal symmetry. The entire structure including the

GaAs substrate is illustrated in Fig. 20. The versions of this structure we examined are:

• 1λ–1THIN the structure as described above,

• 1λ–1THICK same structure with a 600 Å thick oxide aperture,

• 1λ–2THICK same structure with a 600 Å thick oxide aperture in both the top and

bottom barrier regions, and

• λ/2–1THICK same DBRs but with a λ/2 cavity and a 600 Å thick oxide aperture in

the top barrier region.

All materials indices are assumed to be real so that the only source of field loss is through

absorption in the ALs. For this particular structure, the details of generating the absorbing

layer function b(ρ) will later be shown.

In Figs. 22 and 23 we plot |Eφ| and the time averaged electromagnetic energy density,

w ≡ 1

4

[
ε0εr,j

∣∣∣ ~E
∣∣∣
2

+ µ0

∣∣∣ ~H
∣∣∣
2
]

, (94)

for the sample 1λ–1THIN, ρox = 0.4 µm VCSEL; these plots are representative of the

general lasing mode profiles for all the VCSELs we tested. The fields are found by sub-

stituting the lasing mode eigenvector (X) into the field expansion given in (87). The Eφ

profile (Fig. 22) is similar to the familiar standing wave profile obtained via simple scalar

field techniques, however, we anticipate our result is more accurate due to the full vector

solution. The energy density (94) is found by estimating ~H from the ~E field expansion (87)

and Faraday’s law. Although this is less familiar than the Eφ profile, it is a more accurate

representation of the spatial mode energy distribution throughout the VCSEL.

Using the spatial mode profile, we estimate the total and transverse confinement factors

as

Γtot ≡
∫

Ωpump
w dv∫

ΩV
w dv

, (95)

and

Γtr ≡
∫

Ωpump
w dv∫

Ωgain
w dv

, (96)

respectively; ΩV is the VCSEL volume, and Ωpump and Ωgain are the pumped and total

volume of the gain region, respectively. For purpose of calculation, we estimate Ωpump as
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FIG. 22: Example plot of |Eφ| for the 1λ–1THIN structure with oxide aperture radius ρox = 0.4 µm.

To increase clarity, the figure domain is smaller than the calculation domain, and the background

intensity has been set to white.

the volume of the active layer inside the oxide aperture (e.g., with ρ ≤ ρox). The total

confinement factor represents the percentage of the mode energy overlapping the active gain

region 2. We use this later in the Fabry-Perot laser equation to estimate material threshold

gain from the total modal loss (102). The transverse confinement factor has less quantitative

application but is a nice indicator of how well the lasing mode is confined in the transverse

dimension.

We plot Γtr for each of the VCSEL structures in Fig. 24. The results for the 1λ cavity are

somewhat intuitive: for any given radius more and thicker oxides yield greater confinement.

For the λ/2 case, the oxide aperture does not overlap well (in the z direction) with the

standing wave. Therefore, the transverse confinement is relatively small, however, the total

2 This is a somewhat different definition than the more standard definition using the standing wave intensity(
∼

∣∣∣ ~E
∣∣∣
2
)

. However, the two definitions should yield similar results in most cases.
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FIG. 23: Example plot of the stored energy density w for the 1λ –1THIN structure with oxide

aperture radius ρox = 0.4 µm. To increase clarity, the figure domain is smaller than the calculation

domain, and the background intensity has been set to white.

confinement factor—due to the short cavity—is very large, as shown in Fig. 25. The high

contrast DBRs allow less field penetration and therefore a very high total confinement factor

for all four test cases, compared to analogous semiconductor DBR VCSELs.

Due to the absorbing layers, the eigenvalues of (86) are complex, and take the general

form

ξi = k2
i =

ω2
i

c2
≡ ( ri + i qi)

2 . (97)

Here ri and qi are the real and complex parts of the (total) propagation constant ki of

mode i. From (97) we immediately recognize the mode resonance as

λi =
2π

ri

. (98)

By definition, the fields vary harmonically as

exp ( iωit) = exp ( ikict) = exp ( irict) exp (−qict) , (99)
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FIG. 24: Transverse confinement factor verses oxide aperture radius for the fundamental lasing

mode. The lines are cubic spline fits of the discrete calculation data.
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FIG. 25: Total confinement factor verses oxide aperture radius for the fundamental lasing mode.

The lines are cubic spline fits of the discrete calculation data.

where the mode frequency is Re(ωi) = ric and the total cavity loss rate (1/seconds) is

li ≡ qic. These results describe a three-dimensional leaky cavity, losing energy at a rate of

li . We would prefer to express our results in terms of the more familiar Fabry-Perot (F-P)
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laser model. To do this, we convert ωi to a complex propagation constant

βi ≡ ω∗i
c

ngain, (100)

where ∗ is the complex conjugate, required such that a lossy ωi maps to a lossy βi. The

imaginary part of βi gives the field loss rate (for Im(βi) > 0) in cm−1. Since energy is

proportional to the square of the field, the intensity lost per unit length (αi) is given by

αi ≡ 2 Im(βi). (101)

In deriving αi all we have done is convert energy lost per time to energy lost per propagation

length. To apply this loss rate to a “textbook” Fabry-Perot laser, the cavity length would

have to be adjusted in accordance with the blueshift [10]. Finally, we calculate the threshold

gain (gth) from the F-P lasing condition,

Γtot
i gth,i = αi. (102)

In Figs. 26 and 27 we plot the modal resonance and threshold gain as a function of

oxide aperture radius for all four test VCSELs. The resonance results show the now familiar

blueshift, with more and thicker oxide apertures yielding a larger shift. Interpretation of the

threshold gain curves is more complicated. We discuss these results later in our discussions

regarding optical losses and diffraction arising in this model.

To better understand the optical loss sources, we would like to divide the total optical

mode loss (αi) into a mirror loss
(
α

(mirror)
i

)
, due to emission out the ends of the VCSEL,

and a diffraction loss
(
α

(diffraction)
i

)
, due to loss out the VCSEL side. To do this, we use

conservation of energy and the relationship between α and the radiated power and stored

energy [24],

α =
PV

vpWV

. (103)

Here vp is the field phase velocity,

PV ≡ 1

2
Re

{∫∫

ΓV

(
~E × ~H∗

)
· d~s

}
(104)

is the total time averaged (real) power exiting the VCSEL (ΩV ) through ΓV , and

WV ≡ W e
V + Wm

V (105)

48



0.4 0.5 0.6 0.7 0.8 0.9 1
840

845

850

855

860

865

Oxide Aperture Radius (µm)

R
es

on
an

t W
av

el
en

gt
h 

(n
m

)
1λ−1THIN  
1λ−1THICK 
1λ−2THICK 
λ/2−1THICK

FIG. 26: Lasing mode resonance verses oxide aperture radius. The lines are cubic spline fits of the

discrete calculation data.

0.4 0.5 0.6 0.7 0.8 0.9 1
0

500

1000

1500

2000

2500

3000

Oxide Aperture Radius (µm)

T
hr

es
ho

ld
 M

at
er

ia
l G

ai
n 

(c
m

−
1 ) 1λ−1THIN  

1λ−1THICK 
1λ−2THICK 
λ/2−1THICK

FIG. 27: Threshold (material) gain verses oxide aperture radius. The lines are cubic spline fits of

the discrete calculation data.

is the total time averaged stored energy. This consists of the electric and magnetic field

energies,

W e
V ≡

1

4

∫∫∫

ΩV

ε0εr,ja
∣∣∣ ~E

∣∣∣
2

dv, (106)
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and

Wm
V ≡ 1

4

∫∫∫

ΩV

µ0a
∣∣∣ ~H

∣∣∣
2

dv, (107)

respectively. Equation (103) is derived from the relationship between cavity Q and loss rate,

adapted to the F-P laser model. We find in practice that numerical application of (103)

gives results exactly matching those obtained with (101), verifying the general approach. It

is then a simple matter to break α into radial and axial components,

α(diffraction) =
PS

vpWV

, (108)

and

α(mirror) =
PT + PB

vpWV

. (109)

Here

PV = PS + PT + PB, (110)

breaks the total power exiting the VCSEL into that leaving through the side (PS), and that

leaving through the top and bottom surfaces (PT ) and (PB), respectively. These powers are

calculated by restricting the integral in (104) to the corresponding surfaces. Note that for

these calculations, we assume the VCSEL materials are lossless and calculate “cold cavity”

radiative loss parameters. Although absorptive loss may be significant in operating VCSELs,

this calculation should give a good estimate of the diffraction loss. The calculation can be

easily modified to fold in absorptive losses if required.

In Figs. 28 and 29, we plot the radial mode loss and the radial percentage of the total

mode loss, respectively. Comparing the two figures, we see that α(mirror) the majority of

the change in threshold with aperture radius is due to a change in α(diffraction). This is not

surprising, since we expect the change in mirror reflectivity to be relatively small and the

diffraction to increase as the aperture size decreases.

By examining the loss characteristics for each VCSEL design, we may deduce the physical

mechanisms governing diffraction. Our results support the idea that diffraction may be

viewed as a coupling between the bound eigenmode and the continuum of parasitic modes

[38]. These are radially propagating slab modes in the unapertured (cladding) region.

Deppe explains in [26] that for a cavity bound by perfectly conducting mirrors, the parasitic

mode density will resemble a slanted staircase following the three dimensional density of

modes. The jumps in the staircase occur at each vertical resonance in the cladding region.
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FIG. 29: Percentage of the total mode loss due to radial losses for the fundamental lasing mode.

The lines are cubic spline fits of the discrete calculation data.

Deppe’s results suggest that shorter cavities are superior since the eigenmode overlaps with

a smaller density of parasitic modes. This idea is illustrated in Fig. 30.

For our high contrast DBRs, we expect very similar behavior to this ideal mirror case.

Comparing the threshold gains of each structure (Fig. 27), the λ/2 cavity threshold is con-
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FIG. 30: Illustration of the “slanted staircase” parasitic mode density. The density follows the

three-dimensional, free-space density of optical modes (dotted line). The jumps in the staircase

occur at each vertical resonance in the cladding region. The two discrete modes are representative

of a low threshold (A), and a higher threshold (B) lasing mode.

sistently lower than all the 1λ cases. Moreover, comparing the percentage of the total mode

energy lost to diffraction (Fig. 29), the λ/2 VCSEL is again superior. These results can’t be

attributed to transverse confinement, since the λ/2 VCSEL has the smallest Γtr of all four

cases. However, these results could be attributed to the larger total confinement factor (Fig.

25), or to a smaller density of parasitic modes interacting with the λ/2 cavity eigenmode. It

turns out that these two factors are closely related: the longitudinal confinement factor—or

effective cavity length in the cladding region—determines the location of the steps in the

parasitic mode density (Fig. 30).

Adopting Deppe’s parasitic mode density interpretation, we can explain the difference

in threshold between the λ/2 and 1λ cavity VCSELs, but we cannot easily explain the

disparity among the three 1λ cases, which should have very similar parasitic mode densities.

Furthermore, the parasitic mode density is solely a function of (effective) cavity length,

and therefore cannot address radius-dependent changes in diffraction. To capture these

radius-dependent effects, and to distinguish the various 1λ cavity structures, we propose

that the diffractive loss is a function of both the density of parasitic modes and the coupling

strength between the eigenmode and the parasitic modes. Moreover, this coupling strength
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is a function of two factors: (1) the relative alignment of the eigenmode and parasitic mode

propagation vectors, and (2) the eigenmode penetration into the cladding region.

The 1λ–1THIN VCSEL exhibits the lowest threshold and the lowest diffraction loss (Fig.

28) of all three 1λ VCSELs. Because of the weak transverse confinement (Fig. 24 ) and

the resulting mode spread, the field in this structure is more planar and the propagation

vector is paraxial with respect to normal to the planar interfaces. As a result, the eigenmode

wavevector is nearly orthogonal to the parasitic mode wavevectors, which lie principally in

the plane of the layer structure. The parasitic mode wavevectors can have components out

of the plane, but the larger these components are the less energy they will carry away in the

radial direction. We attribute the low threshold for this design to this misalignment between

the eigenmode and parasitic mode wavevectors. This hypothesis is further supported by the

peculiar results for the double-apertured 1λ–2THICK VCSEL.

The double-apertured VCSEL has the largest transverse confinement factor of all three

1λ cavity VCSELs. Using the weighted index method [39], we showed that this transverse

confinement has two primary effects:

1. It confines the mode energy within the aperture region.

2. It causes the eigenmode propagation vector to tilt away from normal to the DBRs.

The first effect acts to decrease the parasitic mode (or diffractive) loss by containing the

mode energy, while the second acts to increase it through stronger coupling (better propa-

gation vector alignment) to the parasitic modes. These processes compete, and, depending

on VCSEL design and aperture radius, either effect may dominate. For the 1λ–2THICK

VCSEL, the transverse confinement is ≥ 0.95 for aperture radii from 1.0 to 0.6 µm; for these

radii, the first effect dominates. However, somewhere between 0.6 and 0.4 µm enough mode

energy exists outside the oxide aperture such that the strong parasitic mode coupling causes

the optical loss to rapidly increase. In essence, the cavity in the unapertured region (ρ ≥ ρox)

forms a waveguide whose source is the lasing eigenmode. When the eigenmode penetration

into the waveguide region becomes large enough, the waveguide appears to “siphon” energy

away from the eigenmode. This effect is clearly illustrated in the plots of |Eφ| for the 0.6

and 0.4 µm cases in Figs. 31 and 32, respectively.

We have performed quasi-exact calculations of the lasing mode parameters in an oxide

apertured, oxide DBR VCSEL. Our results are consistent with past trends from measure-
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FIG. 31: |Eφ| for the 1λ–2THICK structure with oxide aperture radius ρox = 0.6 µm. To increase

clarity, the figure domain is smaller than the calculation domain, and the background intensity has

been set to white.

ment and calculation. We find a blueshift in modal resonance with aperture radius and

design. Most importantly, we calculate the total optical mode loss and threshold gain for

our microcavity VCSELs. From these results we found that the physical factors which de-

termine the parasitic mode loss are the density of parasitic modes and the percentage of

the eigenmode coupling to the parasitic modes. The coupling percentage is itself a function

of the eigenmode penetration into the cladding (ρ > ρox) region and the relative alignment

between the parasitic mode and eigenmode propagation vectors. Roughly speaking, these

two factors determine the magnitude of the parasitic mode source and the strength of the

eigenmode-to-parasitic mode coupling.

This model may be used to qualitatively explain past, seemingly conflicting, oxide design

results. In [40], the authors suggest thinner oxides placed at standing wave antinodes give the

lowest thresholds. They consider semiconductor DBR VCSELs with longer effective cavity

lengths and relatively large parasitic mode densities, approaching the three dimensional
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FIG. 32: |Eφ| for the 1λ–2THICK structure with oxide aperture radius ρox = 0.4 µm. Note the

field leakage into the waveguide formed by the oxide apertures and the cavity. To increase clarity,

the figure domain is smaller than the calculation domain, and the background intensity has been

set to white.

density of modes. As a result, even weak coupling to the parasitic mode continuum will

yield a large diffractive loss, implying thinner oxides are better for their structures. On the

other hand, the authors of [41] work with a λ/2 cavity VCSEL with one semiconductor and

one dielectric DBR. In their case, the cavity and corresponding optical density of modes is

much smaller, and the confinement aspect of their oxide aperture dominates the increased

coupling strength to yield a low threshold design.

Finally, we note that our general finite element method can also be extended to calculate

the heat and carrier distribution throughout the VCSEL to yield an even more complete

model. These are both scalar quantities and are therefore much easier to calculate. The

main drawback with the FEM is the computational power, time, and memory required to

solve the large sparse, complex, non-Hermitian generalized eigenvalue problem. However,

with the availability of much faster processors and much larger memory modules in the near
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FIG. 33: Numbering convention of the six node, six edge, and two face based element functions.

future, this issue may soon disappear.

Vector Basis Functions for m=1 Modes

In this separate section, we review the vector basis functions employed in our finite

element model. Based on the literature, we choose to span the mesh using second order

node, edge, and face element functions [42, 43]. These functions have been shown to be a

good compromise between mesh density and function order, roughly minimizing the total

number of unknowns required to obtain a given solution accuracy. For each triangle in the

mesh there are 14 basis functions: 6 node based
(

~N0 − ~N5

)
, 6 edge based

(
~W0 − ~W5

)
, and

two face based
(

~W6, ~W7

)
, as illustrated in Fig. 33[43, 44] . To define the 14 element

functions, we use simplex (or barycentric) coordinates, defined over the triangular element

via the affine transformation [45, 46],




1

ρ

z


 =




1 1 1

ρ0 ρ1 ρ2

z0 z1 z2







ζ0

ζ1

ζ2


 . (111)

Here (ρ0, z0), (ρ1, z1), and (ρ2, z2) are the three corners of the triangle, and ζ0, ζ1,and ζ2

are the simplex coordinates. Based on the ζi, the element vector functions are
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~N0 ≡ (2ζ0 − 1) ζ0

(
φ̂ + ρ̂

)
, (112)

~N1 ≡ (2ζ1 − 1) ζ1

(
φ̂ + ρ̂

)
, (113)

~N2 ≡ (2ζ2 − 1) ζ2

(
φ̂ + ρ̂

)
, (114)

~N3 ≡ 4ζ0ζ1

(
φ̂ + ρ̂

)
, (115)

~N4 ≡ 4ζ1ζ2

(
φ̂ + ρ̂

)
, (116)

~N5 ≡ 4ζ0ζ2

(
φ̂ + ρ̂

)
, (117)

~W0 ≡ ρζ1∇τζ2 =
ρζ1

∆
{b2ρ̂ + c2ẑ} , (118)

~W1 ≡ ρζ2∇τζ1 =
ρζ2

∆
{b1ρ̂ + c1ẑ} , (119)

~W2 ≡ ρζ2∇τζ0 =
ρζ2

∆
{b0ρ̂ + c0ẑ} , (120)

~W3 ≡ ρζ0∇τζ2 =
ρζ0

∆
{b2ρ̂ + c2ẑ} , (121)

~W4 ≡ ρζ0∇τζ1 =
ρζ0

∆
{b1ρ̂ + c1ẑ} , (122)

~W5 ≡ ρζ1∇τζ0 =
ρζ1

∆
{b0ρ̂ + c0ẑ} , (123)

~W6 ≡ ρ 4ζ1 (ζ2∇τζ0 − ζ0∇τζ2) (124)

=
ρ4ζ1

∆
{ζ2 (b0ρ̂ + c0ẑ)− ζ0 (b2ρ̂ + c2ẑ)} ,

~W7 ≡ ρ 4ζ2 (ζ0∇τζ1 − ζ1∇τζ0) (125)

=
ρ4ζ2

∆
{ζ0 (b1ρ̂ + c1ẑ)− ζ1 (b0ρ̂ + c0ẑ)} .

Here

∇τ ≡ ∂

∂ρ
ρ̂ +

∂

∂z
ẑ, (126)

the bi and ci are given by the inverse affine transformation,
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are overlayed on a triangle outline of the element.
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1

∆
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

a0 b0 c0
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





1

ρ

z


 , (127)

and ∆ is twice the area of the triangle,

∆ ≡
2∑

i=0

ρi (zi1 − zi2) =
2∑

i=0

ρibi =
2∑

i=0

zici (128)

(i, i1, and i2 are modulo 3). These functions are illustrated in Figs. 34 and 35. These func-

tions have three important properties that make them ideal for electromagnetic calculation

in cylindrical coordinates.

First, when filling the S and T matrices, functions based on the same node or edge of

neighboring elements (not necessarily with the same element function number ~N0− ~W7) are

assigned the same coefficient xi. As a result, the node and edge functions naturally enforce

tangential field continuity (as illustrated in Fig. 36) without necessarily forcing normal field

continuity, due to the two face functions.
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FIG. 35: Illustration of the six edge based ( ~W0− ~W5) and the two face based ( ~W6− ~W7) functions

for a typical element; the functions are overlayed on a triangle outline of the element. These

illustrations do not include the ρ weighting present in (118) – (125).

EB

EA

FIG. 36: Illustration of the natural tangential continuity between mesh elements. By assigning the

same coefficient xi to ~W1 of element A and ~W0 of element B, the vector sum of the two functions

is tangential to their common edge.
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Second, our element functions are modified from the more standard form [44] to force

field regularity at ρ = 0 (the axis condition). The lasing modes we seek are analogous to

the (m = 1) LP01 fiber modes [23], where the azimuthal field dependence is sin(φ)/ cos(φ) .

The proper axis condition for the m = 1 modes is [47]

lim
ρ→0

Eρ = Eφ, (129)

and

lim
ρ→0

Ez = 0. (130)

This condition is included in (112) – (125) by weighting the “standard” [44] edge and face

functions by ρ, and including the node functions as part of the ρ̂ field expansion. Note that

we may find m = 0 and m > 1 modes using a basis similar to ( 112) – (125), altered to

accommodate the proper axis condition for these modes.

Third and least obvious, these elements properly model the null space of the curl operator,

which has been shown to eliminate the occurrence of spurious solutions (modes) [48, 49].

Absorbing Layer Design

In this section, we give the details of an absorbing layer design pioneered for this effort

. We use a two step process to optimize b(ρ), the absorbing layer loss function: First,

we obtain a rough estimate using an asymptotic description of the fields and reflections.

Second, we fine-tune the layer by minimizing the exact reflection values as obtained by a

rigorous transfer matrix calculation. In both steps we model the radial AL (ΩS) as a set of

discrete cylinders, as shown in Fig. 37, approximating a(ρ) as an = a((ρn + ρn−1) /2), where

AL cylinder n is defined by [ρn−1, ρn]. To simplify further, we ignore the z dependence of

the material parameters and perform our analysis using a single set of (εr, µr), the rough

mean material values for the VCSEL. This should be sufficient, since we are not concerned

about interfacial reflections between the various axial layers, and desire only to suppress non-

physical radial reflections. We choose b(ρ) to minimize the reflection of cylindrical waves

incident on the radial boundaries.

These waves are constructed from the ẑ and φ̂ field components given in each region
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FIG. 37: Illustration of the geometry used to design the radial AL. ΩS is broken into discrete

cylinders, each with a constant AL parameter an = a((ρn + ρn−1)/2).

(cylinder) by

Hz,n(ρ, z) =
(
ATE

n H
(2)
0 (knρ) + BTE

n H
(1)
0 (knρ)

)
eiβnz, (131)

Ez,n(ρ, z) =
(
ATM

n H
(2)
0 (knρ) + BTM

n H
(1)
0 (knρ)

)
eiβnz, (132)

Hφ,n(ρ, z) =
−iωε0εran

k2
n

∂Ez

∂ρ
(133)

=
iωε0εran

kn

(
ATM

n H
(2)
1 (knρ) + BTM

n H
(1)
1 (knρ)

)
eiβnz,

Eφ,n(ρ, z) =
iωµ0an

k2
n

∂Hz

∂ρ
(134)

=
−iωµ0an

kn

(
ATE

n H
(2)
1 (knρ) + BTE

n H
(1)
1 (knρ)

)
eiβnz,

where a0 = 1 (b0 = 0) in ΩV and we have assumed non-magnetic materials ( µr = 1 ). The

coefficients Apol
n and Bpol

n are the magnitude for the outward and inward propagating waves,

and pol = TE or TM labels the (uncoupled) polarizations of the m = 0 modes. It has been

shown [35] that absorbing layers that perform well for these m = 0 modes will also work

well for the m = 1 modes that we are interested in.

We can describe cylindrical waves incident at an angle θ —measured from the normal to

ΓS in the ρ− z plane (n̂ΓS
)—to the radial interface by writing the radial (kn) and axial (βn)

propagation constants as

kn = k0ηan cos (θ) , (135)

βn = k0ηan sin (θ) . (136)
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This choice ensures that kn and βn satisfy the dispersion relation

ω2µ0ε0εra
2
n = k2

0εra
2
n = k2

n + β2
n, (137)

in each region, where the (generally complex) index of refraction is

η ≡ √
εr. (138)

For the initial AL design analysis we employ the theory of small reflections [50], approx-

imating the total Fresnel reflection for a cylindrical wave incident on the AL at ρ0 as

r ≈ | r0|+ | r1| t1 + | r2| t1,2 + . . . +
∣∣ rNcyl

∣∣ t1,2,...,Ncyl
. (139)

Here Ncyl is the total number of cylinders in the AL, rn is the Fresnel reflection coefficient

at ρn, and t1,2,...,n gives the attenuation due to the propagation from ρ0 to ρn and back.

We use | rn| rather than rn in (139) to minimize the interference effects, since we are after

a broadband AL design optimized for all angles of incidence. We estimate rn using the

asymptotic form for cylindrical waves in each region n. Due to the form of (92) and (131) –

(134), the magnitude of the TE and TM Fresnel reflection coefficients are the same, hence we

need only perform the analysis once. Taking the asymptotic form for the Hankel functions,

lim
ρ→∞

H
(1)/(2)
0 (knρ) v e±iknρ

√
knρ

, (140)

(+ applies to (1) and − applies to (2)) and enforcing tangential field continuity, we find

| rn| =

∣∣∣∣
ankn+1 − an+1kn

ankn+1 + an+1kn

∣∣∣∣ (141)

=

∣∣∣∣
cos (θn+1)− cos (θn)

cos (θn+1) + cos (θn)

∣∣∣∣ ,

for n = 0 to Ncyl − 1. θn and θn+1 are the (complex) propagation angles with respect to

n̂ΓS
in regions n and n + 1, respectively. We set

∣∣ rNcyl

∣∣ = 1 to enforce the perfect conductor

boundary condition at the mesh edge (Γ). Keeping only the first (lowest order) term in the

derivatives of (140), we approximate

t1,2,...,n = t1t2 . . . tn, (142)

where

tn ≡ e−i2knln , (143)
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and kn and ln ≡ ρn − ρn−1 are the radial propagation constant and cylinder thickness in

region n. Substituting (141) – (143) into (139) and taking the magnitude yields,

| r| ≈
∣∣∣∣∣∣

Ncyl∑
n=0

| rn|
n∏

ń=0

e−i2kńlń

∣∣∣∣∣∣
, (144)

which we may solve for a given a(ρ) to find |r (θi)|, the magnitude of the total Fresnel

reflection for a general (e.g., includes axial propagation exp(iβz)) cylindrical wave incident

on the AL at angle θi. Note that (144) is equivalent to the result obtained via a plane wave,

planar interface analysis, and may therefore be directly applied to the axial AL design (ΩT

and ΩB), in addition to the radial design (ΩS).

To finalize our radial AL design we use a 2×2 transfer matrix solution for the TE or TM

fields. Enforcing continuity of (131) and (134), or (132) and (133) at each radial interface

ρn, we have

Ln


 An

Bn


 = Rn+1


 An+1

Bn+1


 , (145)

where

Ln ≡

 H

(2)
0 (knρn) H

(1)
0 (knρn)

an

kn
H

(2)
1 (knρn) an

kn
H

(1)
1 (knρn)


 , (146)

and

Rn+1 ≡

 H

(2)
0 (kn+1ρn) H

(1)
0 (kn+1ρn)

an+1

kn+1
H

(2)
1 (kn+1ρn) an+1

kn+1
H

(1)
1 (kn+1ρn)


 . (147)

We have dropped the pol=TE/TM superscript since (145) holds for both polarizations. At

the mesh boundary (Γ), we enforce Eφ = 0 which relates the coefficients in the outermost

AL cylinder by

ANcyl
= −BNcyl

H
(1)
1 (kNcyl

ρNcyl
)

H
(2)
1 (kNcyl

ρNcyl
)
. (148)

For convenience, we choose ANcyl
= −H

(1)
1 (kNcyl

ρNcyl
) and BNcyl

= H
(2)
1 (kNcyl

ρNcyl
). Begin-

ning in the outer AL cylinder and working inward via repeatedly applying (145), we calculate

A0 and B0. The total Fresnel reflection coefficient for an outward propagating wave incident

on the AL is given by

| r| =
∣∣∣∣
B0

A0

∣∣∣∣ . (149)
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To design our AL, we ran the analysis outlined previously with VCSEL material param-

eters εr = 9 and µr = 1. We assumed a polynomial form for the AL loss function,

b(χ) ≡
order∑
i=1

b̃iχ
i. (150)

Here order refers to the polynomial order, b̃i are the polynomial coefficients, and

χ ≡ ρ− ρΓS

ρΓ − ρΓS

(151)

is the normalized radial coordinate ranging from 0 at ΓS, the VCSEL–AL interface, to 1 at

Γ, the problem/mesh boundary. Through a numerical optimization, we found that a second

order polynomial with coefficients,

b̃1 = 0.1178, (152)

b̃2 = 0.7433, (153)

worked best for b(χ). In addition, we found an AL thickness of 1.5λ (at λ = 870 nm)

was superior, with little change in the AL properties for greater thicknesses. The reflection

coefficient (calculated with the transfer matrix approach) verses angle is given in Fig. 38.

The key point to recognize from Fig. 38 is the intensity reflection, RdB ≡ 20 log10(| r |) ≤
−50 dB for θi ≤ 40◦, indicating a good “wide-angle” absorber design.

To provide a more practical test of our AL design, we analyzed the 1λ –1THIN VCSEL

(previously described), tracking the lasing mode (defined as the lowest loss mode, e.g., the

mode with the smallest Im(ξ)) eigenvalue as a function of ρΓS
− ρox, which is the separation

between the VCSEL-AL boundary and the oxide aperture. We tested two different oxide

aperture radii, 0.5 µm and 1.0 µm, using our 1.5λ (= 0.435 µm), second order polynomial AL

design. The resulting real and imaginary parts of the eigenvalues converge for ρΓS
− ρox ≥

0.9 µm (corresponding to ≈ 3λ), denoting the minimum allowable separation between the

oxide aperture and ΓS. It is interesting to note that for the 1.0 µm oxide aperture, the

variation in the eigenvalue from ρox = 1.2 µm to 2.0 µm corresponds to a variation in the

resonant wavelength of less than two angstroms, implying that the AL works well even when

placed very close to the aperture. No analogous test was performed on the axial AL design;

we assume that, based on the good results of the radial AL design and the high reflectance

of the oxide DBRs, the optimized radial AL design should work for the axial AL as well.

To perform the lasing mode analysis, we used ρΓS
= 2.0 µm and varied the oxide aperture

radius (ρox) from 0.4 µm to 1.0 µm.
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FIG. 38: Calculated intensity reflection R ≡ |r|2 of the radial absorbing layer (AL) using the rig-

orous transfer matrix approach. The calculation is based on a 1.5λ thick AL at 870 nm, positioned

with ρΓS
= 2.0 µm. Thirty layers were used to discretize the AL loss function. Inset is the intensity

reflection in decibels RdB ≡ 20 log10(|r|).

Comparison of WIMP and VFEM to Published Results

In this section, we present detailed comparison and results when both the weighted index

method and the vector finite element method simulations are applied to two structures found

in the literature. The goal here is not only to calibrate and/or validate each model to known

results, but also to examine the individual strengths and shortcomings of each model. As

a quasi-exact approach, we expect the VFEM to give superior results for all investigated

parameters (resonant wavelength, transverse confinement factor, diffraction losses, etc. . .).

Nevertheless, the computation time and problem setup may make this method unattractive

for a number of applications, and therefore this comparison of the two methods is warranted.

We computed the resonant wavelength, threshold gain, and transverse confinement fac-

tor as a function of oxide aperture radius for four variations of VCSEL structures grown,

fabricated, and tested by Professor Y.-H. Lee’s research group at the Korea Advanced In-

stitute of Science and Technology (KAIST)[51, 52]. It can be seen from Fig. 39 that the

eigenmode resonances match very well for each structure. The WIMP results deviate by a

uniform translation in wavelength by ≈ 2nm. This shift may be due to the difference in
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FIG. 39: Comparison of the resonant wavelength calculated using the WIMP and VFEM methods

for the four variations of the KAIST VCSEL described in Refs.[51, 52].

how the VCSELs are represented in this versus the VFEM. Such small discrepancies can

easily be attributed in how the material layer thicknesses or indices of refraction are han-

dled in these codes. The threshold gain (Fig.40) shows much larger discrepancies, however.

Indeed, the WIMP values for gth deviate by roughly 2× the values of the reference VFEM

results for all three 1λ cases. The λ/2 thick cavity results are even worse, with the wrong

trend even occurring: the WIMP has the λ/2 case having the highest value of gth, while

the VFEM demonstrates the experimentally validated case of such cavities having lower

threshold. This lack of agreement could be partially explained by the fact that this VCSEL

structure stretches the limits of the assumption of separability upon which the WIMP for-

malism is based. More realistically, however, is a fundamental problem in how the diffraction

losses are calculated in WIMP. Finally, the transverse confinement factor, Γtr, is displayed

for these structures in Fig.41. From this figure, it is evident that both models agree very

well. In total, then, the WIMP is seen to give reasonable results (and certainly good quali-

tative trends !) for predicting λ and Γ, but parasitic mode coupling is still an issue of further

research.
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FIG. 40: Comparison of threshold gain calculated using the WIMP and VFEM methods for the

four variations of the KAIST VCSEL described in Refs.[51, 52].

FIG. 41: Comparison of the transverse confinement factor calculated using the WIMP and VFEM

methods for the four variations of the KAIST VCSEL described in Refs.[51, 52].
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FIG. 42: Sample VFEM meshing of the “blunt” aperture region in an oxide-apertured VCSEL.

FIG. 43: Sample VFEM meshing of the tapered aperture region in a theoretical oxide-apertured

VCSEL.

VFEM Applied to Tapered Oxide Apertures

As shown in the previous section, the VFEM has proven to give superior results for

diffraction losses occurring in a variety of structures when compared to the WIMP method.

With its basis in the finite element method, this VFEM code is also able to handle structures

that WIMP simply cannot, namely devices having more structure in the radial geometry.

One example of such a device is a tapered-oxide-aperture VCSEL. A VFEM meshing of a

traditional “blunt” oxide aperture structure is shown in Fig.42, while that for a tapered

structure is shown in Fig.43. Although simulation of a structure like this might seems

contrived, nothing is further from the truth. Indeed, it is possible to force tapering of such

structures simply by varying the mole fraction of aluminum in the aperture’s AlxGa1−xAs

layers from, say, x = 0.95 to x = 1.00, which can be done either through mass flow controller

operations in the case of MOCVD growth, or by digital alloying techniques[53].

The structures under investigation are a λ/2-cavity VCSEL based on a design from the

University of Texas (henceforth denoted “UT”)[54], and a 4− λ-cavity VCSEL design gen-

erated at the University of Southern California (denoted hereon as “USC”)[55]. The UT

structure has a single InxGa1−xAs QW gain source, and employs AlAs - GaAs bottom DBR

mirrors (26 pairs) as well as post-growth-deposited dielectric mirrors (6 pairs of ZnSe - MgF).

A schematic representation of the layer structure is shown in Fig.44, and a plot of the the-

oretical index of refraction and standing wave intensity profile is demonstrated in Fig.45.
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FIG. 44: Schematic representation of the “UT” short-cavity VCSEL under investigation.

Oxide apertures, nominally 396 Å thick on either side of the QW, occur at positions midway

between the cavity standing wave nodes and anti-nodes. In contrast, the USC “long-cavity”

structure is comprised of all-semiconductor mirror layers surrounding the 4-λ-thick optical

cavity. The structure has a single 300 Å oxide aperture centered on the standing wave peak

(anti-node), above the QW active region. Fig.46 demonstrates the schematic representation

and Fig. 47 standing wave fields for this structure, respectively.

For each of these structures, we computed the transverse confinement factor (Γtr), the

diffraction rate, the field distribution (Eφ), and the threshold material gain (gth) with respect

to oxide aperture taper length (see Fig. 43). For each case, this variation was computed

for three different inner oxide-aperture radii: 1, 2, and 3 µm. For each of these radii, the

taper length was then varied from 0 µm (“blunt” aperture), to 3 µm, in 1-µm increments.

Additionally, the oxide aperture thickness was kept constant, and only the taper length was

varied, synonymous with “longer apertures are sharper.”

Results for calculation of the transverse confinement factor for both the USC and UT

designs as a function of aperture taper length are shown in Figs. 48 and 49. As the taper

length is increased, the volume of low index material in the vicinity of the VCSEL core

decreases. This results in a reduction of the effective index[10] contrast between core and
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FIG. 45: Theoretical plot of the “UT” short-cavity VCSEL standing wave fields and refractive

index profile.

FIG. 46: Schematic representation of the “USC” long-cavity VCSEL under investigation.
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FIG. 47: Theoretical plot of the “USC” long-cavity VCSEL standing wave fields and refractive

index profile.

FIG. 48: Plot of Γtr as a function of oxide aperture taper radius for the UT structure. Note: This

calculation assumes uniform gain over the aperture cross-section.

cladding regions. Consequently, the mode spreads out spatially, and Γtr diminishes. In

lesson, the smaller the oxide aperture’s inner radius, the more pronounced are the effects of

giving the aperture a tapered shape.
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FIG. 49: Plot of Γtr as a function of oxide aperture taper radius for the USC structure. Note:

This calculation assumes uniform gain over the aperture cross-section.

If we define the “diffraction rate” as the percentage of optical mode energy that is scat-

tered or emitted radially out the sie of the VCSEL, than we can compute the relative merits

of tapering an oxide aperture toward unwanted contributions in effective diffractive losses.

The diffraction rate as defined in this manner is plotted in Fig. 50 for the UT structure, and

in Fig. 51 for the USC design. It is seen that tapering the aperture significantly reduces

diffraction losses in both designs, and for all cases (all values of inner oxide aperture radius).

Based on the results for these two disparate structures, reasons for this can be inferred in

the following ways. As mentioned previously, more tapering leads to great spatial spreading

of the mode. A resultant flatter wavefront naturally suffers less diffraction. As discussed by

Hegblom and co-workers[11, 56], tapering of an aperture serves to give it a lens-like quality,

which in turn re-focuses the mode and counters diffraction. Also per the Hegblom model,

the symmetric taper in this structure produces a linear phase shift as a function of radial

position, giving the element a lens with a linear profile. As a result, increasing the taper

length beyond 1 µm is seen to further reduce diffraction in the USC structure, but it has no

appreciable further effect in the UT device.

As the USC cavity length is nearly double that of the UT design, the longer focal length

lensing from longer tapering better matches the USC cavity, significantly reducing diffraction

losses in this structure compared to the UT design. The mode of the UT VCSEL is best
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FIG. 50: Plot of “diffraction rate” (see main text) as a function of oxide aperture taper radius for

the UT structure. The inset shows a blow up for longer taper lengths, demonstrating how slight

the change in diffraction rate becomes for increased taper lengths Note: Each curve corresponds

to a different value of oxide aperture inner radius.

FIG. 51: Plot of “diffraction rate” (see main text) as a function of oxide aperture taper radius

for the USC structure. Note: Each curve corresponds to a different value of oxide aperture inner

radius.

suited for the 1 µm tapers, and further reductions are slight if at all.

Perhaps the most dramatic visualization of the influence of tapered versus blunt oxide
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FIG. 52: Intensity plot of the field distribution Eφ for the UT structure. On the left, the device

as simulated with no tapering of the aperture. On the right, with a 1 µm taper. Note the radial

“fingers” showing the effects of diffraction from the blunt aperture.

apertures can be seen when we examine the electric fields in such devices. In Figs. 52-53

are plotted the field distributions of the optical field Eφ for the UT and USC structures,

respectively. For the UT structure, one sees significant scattering of the field from the oxide

aperture, giving rise to significant energy losses when no aperture is included. Similarly, the

“blunt” aperture case of the USC structure is also evident. Indeed, with a little imagination,

one can almost visualize the reflection of this diffracted energy off of the top boundary surface

(at 10 µm on the vertical axis) back into the VCSEL as a potential guided mode.

Finally, we show the threshold material gain (gth) required to exactly offset optical losses

in Fig. 54 (UT structure) and Fig. 55 (USC structure). This includes not only the effects

of gain-to-mode spatial overlap, but also takes into account transverse mode confinement

effects and diffraction losses, as shown above. For these results, we have assumed a uniform

gain distribution over the cross-section of the aperture. This is not unreasonable in that

one of the early motivating factors for the use of such aperture was in current confinement

or guiding in transistor type devices. In a typical design mindset, for maximizing mode-to-

gain interactions, the optical field should be sharply peaked at the cavity center. However,

as the VFEM has demonstrated, the more concentrated this mode is, the more it can
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FIG. 53: Intensity plot of the field distribution Eφ for the USC structure. On the left, the device

as simulated with no tapering of the aperture. In the middle, a 1 µm taper. On the right, a 3

µm taper. Again, the radial “fingers” indicate diffraction from the blunt aperture, with possible

reflection back into the structure at the semiconductor/air interface at 10 µm on the vertical axis.

potentially diffract, and hence there exists and underlying overlap versus diffraction tradeoff

consideration in optimizing a given design concept. Indeed, it is evident in the calculations

for gth for the UT structure that increasing the oxide taper eventually leads to increased

gth, which is explained as an eventually loss of optical confinement losing out to diffractive

losses in such a design.

Generalized Interface Approach for Exact Design in Graded Interface Distributed

Bragg Reflectors

In this subsection, we introduce the concept of a generalized interface, and demonstrate

how such a construct allows us to design high reflectivity distributed Bragg reflection mirrors

(DBRs) by exactly phase matching the reflectance in layers that include arbitrary grades.

The resulting generalized phase matching constraints depend upon the phase angles of the

reflection and transmission coefficients for these grade layers, and we show the method for
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FIG. 54: Threshold material gain, gth, for the UT structure. Each curve is for a different oxide

aperture inner radius, and we have assumed uniform material gain distribution over the oxide

aperture.

FIG. 55: Threshold material gain, gth, for the USC structure. Each curve is for a different oxide

aperture inner radius, and we have assumed uniform material gain distribution over the oxide

aperture.

calculating these phases to arbitrary precision either analytically (for a certain set of grade

profiles) or numerically (for arbitrary profiles).

The importance of this effort follows from the fact that the use of graded layers instead
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FIG. 56: a) Diagram of a periodic mirror structure with the various phase terms illustrated. b)

Coordinate system and basis functions for the electric field for a section of the mirror.

of abrupt interfaces has been demonstrated to significantly reduce the voltage required to

drive current through DBR mirrors. In the question for low-threshold lasers, then, such

graded layer mirrors are rapidly becoming the norm, and a correct understanding of the

optical principles necessary for microcavity resonance aligned to the active region’s material

gain peak is required to reach these ultimate low-threshold limits.

For a multilayer mirror to have high reflectivity, the individual mirror layers must be

designed in such a manner as to insure that the reflections from every layer constructively

interfere. This is most easily realized by ensuring that the phase change accrued by the field

propagating in a round-trip from one graded layer to the next is equal to a multiple of 2π.

Figure 56 illustrates a periodic mirror structure, and shows the phase terms associated with

the various layers.

The phase of the reflection off the first graded layer is denoted by β1. The phase matching

condition for the second graded layer is then:
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β1 + 2πk = α1 + φH + β2 + φH + α1 k = 1, 2, . . . (154)

Here β2 is the phase for reflection off the second graded layer, α1 is the phase for trans-

mission through the first graded layer, and φH is the phase for transmission through the

constant high index layer. The phase for constant high index (nH) and low index (nL) layers

of thickness dH and dL is simply given by:

φH =
2π nH dH

λ
, φL =

2π nL dL

λ
(155)

The phase matching condition for the next graded layer is:

β2 + 2πl = α2 + φL + β1 + φL + α2 l = 1, 2 . . . (156)

The transmitted and reflected phase terms α and β are determined from the graded layer

designs, and will depend in general on the index profile and thickness of the grades. It is

possible by recursion to show that equations (154) and (156) ensure phase matching for

every reflection, and that they are sufficient to determine both φH and φL, and thus the

thickness, of both the high index and low index layers for a given graded layer design. The

corresponding (minimum) thicknesses are:

dH =
λ (2π + β1 − β2 − 2α1)

4π nH

(157)

dL =
λ (2π + β2 − β1 − 2α2)

4π nL

(158)

where λ is the operating wavelength. The designs of the graded layers are typically

determined by the desired electronic transport through the mirror, with the constant index

layers providing the proper optical thicknesses.

In addition to designing the layers inside the mirror stack, it is also necessary to have a

proper thickness for the layers that terminate the mirror. In the case of a VCSEL, the mirror

would be terminated on one side by the cavity layer, and on the other side by either air or the

substrate, depending on whether the mirror is the top mirror or the bottom mirror. For a

bottom mirror, the form of the phase matching equation remains the same as equation (154),

but the value of the reflected phase term β1 may or may not remain the same depending
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on whether or not the high index mirror layers are composed of the same material as the

substrate. For a top mirror, the value of β1 is zero (since no grade is necessary).

For the cavity, the condition for phase matching is that the round-trip phase of a wave

resonating in the cavity is an integral multiple of 2π. Thus, the phase matching condition

is:

2φHC + β1 + β3 = 2πm, m = 1, 2, . . . (159)

As mentioned previously, the values of the phase terms α and β are determined by the

particular choice of the graded layer index profile and thickness. A method for determining

these values for linear index (composition) grading will be given in the next section.

The problem of graded DBR design has now been reduced to a calculation of the trans-

mission and reflection phase angles α and β for the graded layers. We obtain these angles

from the transmission and reflection coefficients for propagation in the three region case

illustrated in Fig. 56(b): the refractive index is constant in regions 1 and 3 with values n1

and n3, respectively while region 2 is the grade. The refractive index varies approximately

linearly with composition in the AlAs/GaAs[57] material system. If the desired composition

grade is linear, then the index of refraction of the grade will have the form n (z) = n1 + mz

with z = 0 at the interface between region 1 and region 2 and m ≡ (n2 − n1) /L. We

limit ourselves to normal incidence (i.e. propagation along the z direction). Without loss

of generality, we can assume that the electric field vector in regions 1 and 3 consists of only

a ŷ component. In the constant-index regions, the field solutions are simply plane waves

allowing us to write the general electric field in region 1 as Ey = Aeik1z + Be−ik1z and in

region 3 as Ey = Ceik3L + De−ik3L where ki = niω
c

with ω being the frequency and c the

speed of light. To obtain the general solution in region 2 we must solve the sourceless,

macroscopic Maxwell’s equations with a spatially varying dielectric function. This produces

three uncoupled scalar wave equations, one for each component of the electric field in the

graded region. However, the fact that E = ŷEy in regions 1 and 3 along with the boundary

conditions and the divergence condition ∇ · ~E = − 1
ε(z)

∂ε
∂z

Ez will force Ex = Ez = 0 inside

region 2. We are left with the scalar wave equation for Ey given by

∂2Ey

∂z2
+

ε (z) ω2

c2
Ey = 0. (160)
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The general solution for Ey when the index of refraction varies according to
√

ε (z) =

n (z) = n1 + mz is

Ey = C1

√
n (z)

m
J 1

4

(
πn2 (z)

λm

)
+ C2

√
n (z)

m
Y 1

4

(
πn2 (z)

λm

)
(161)

where J 1
4

and Y 1
4

are quarter-order Bessel functions of the first and second kind, respec-

tively (see later details for geometric series expressions for J 1
4

and Y 1
4
). Introducing the

shorthand notation

g (z) =

√
n (z)

m
J 1

4

(
πn2 (z)

λm

)
, (162)

h (z) =

√
n (z)

m
Y 1

4

(
πn2 (z)

λm

)
(163)

we can write the characteristic matrix M (ref. Born and Wolf [58]), which propagates

the field Ey and its z-derivative from z = 0 to z = L, as

M =
1

h (0) g′ (0)− h′ (0) g (0)


 h (L) g′ (0)− h′ (0) g (L) h (0) g (L)− h (L) g (0)

h′ (L) g′ (0)− h′ (0) g′ (L) h (0) g′ (L)− h′ (L) g (0)




(164)

where primes denote differentiation with respect to z.

Because the index is continuous at the grade boundaries, the ~E and ~B fields must be

continuous there. For our solution this requires the continuity of Ey and its derivative.

Applying the boundary conditions and using M to propagate Ey and its derivative across

the grade, we can relate the fields in regions 1 and 3 according to


 Ceik3L + De−ik3L

ik3

(
Ceik3L −De−ik3L

)


 = M


 A + B

ik1 (A−B)


 . (165)

First we solve for transmission and reflectance coefficients for top-down incidence where

A = 1 and D = 0. This gives

tt =
Cte

ik3L

1eik10
=

−2k1

−m11k3 −m22k1 + i (m12k1k3 −m21)
, (166)

rt =
Bte

−ik10

1eik10
=

m11k3 −m22k1 + i (m12k1k3 + m21)

−m11k3 −m22k1 + i (m12k1k3 −m21)
(167)
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where the mij are the elements of M and we have used the fact that M is unimodular.

Now we solve for the coefficients with bottom-up incidence where D = 1 and A = 0

obtaining

tb =
Bbe

−ik10

1e−ik3L
=

2k3

m11k3 + m22k1 − i (m12k1k3 −m21)
, (168)

rb =
Cbe

ik3L

1e−ik3L
=

m11k3 −m22k1 − i (m12k1k3 + m21)

m11k3 + m22k1 − i (m12k1k3 −m21)
. (169)

Note that k1tb = k3tt which implies that in the absence of absorption the transmitted

phase is independent of propagation direction. From these relations, we obtain the desired

phase angles α and β by expressing the coefficients in exponential form as:

tt = tt0e
iα1 , rt = rt0e

iβ1 , tb = tb0e
iα2 , rt = rb0e

iβ2 . (170)

Figure 57 plots the various phase angles as a function of grade length for several popular

material systems.

Once the phase angles for the desired grade thickness are known, the thicknesses of the

constant index layers can be chosen using the phase matching conditions (equations (154)

and (156)). The reflectivity spectrum of the complete structure can be calculated using the

transfer matrix technique by using equation (164) for the graded layer.

For completeness, the fractional Bessel functions of the first and second kind can be

evaluated using the following expressons:

Jν(x) =
∞∑

k=0

(−1)k(x
2
)ν+2k

k! Γ(ν + k + 1)
, Yν(x) =

Jν(x) cos(πν)− J−ν(x)

sin(πν)
(171)

The geometric series for J 1
4

(
πn2(z)

λm

)
converges within calculable error after ten or twenty

terms for reasonable grade lengths and index values.

GROWTH, FABRICATION, AND CHARACTERIZATION OF LOW-THRESHOLD

VCSELS

In this section is detailed both the enhancements in core capability as well as results of

our work in the creation of very-low threshold VCSELs. As mentioned in the introduction,
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FIG. 57: Phase angle plots for several popular materials. a) AlAs/GaAs grade at 980 nm, b)

AlAs/Al0.16Ga0.84As at 850 nm, c) AlAs/Al0.3Ga0.7As at 780 nm, d) AlSb/Al0.1Ga0.9Sb at 1550

nm

much of the initial effort of this project went into two main areas–improvements to modelling

and simulations for correct designs, and then improvement to growth capabilities, which is

the heart of any successful device-focused research.

Growth Capability Development

Our initial forays into developing ultra-low threshold VCSELs began with growth of cal-

ibration structures, such as multiple quantum well (MQW) samples for determination of

emission wavelength and photoluminescence (PL) intensity, and n− and p-doped DBR mir-

rors. The mirror growths served not only to calibrate the growth rates, when accompanied

by fits of the accompanying reflection spectra, but also as a means of studying the conduction

of current through the respective doped mirror structure.
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Initially, our aim was to “walk before you run,” and we took the approach of attempting

to demonstrate lasing in a conventional etched post, pump-through-the-mirrors VCSEL de-

sign before proceeding into state-of-the-art, very-low threshold, oxide-apertured, intracavity

contacted designs.

During these initial stages, many growth issues and challenges facing the current MBE

configuration became clear. For instance, the growth ovens and controllers were relatively

unstable over the long times required for a VCSEL growth (≥ 14 hours in typical cases).

Indeed, reflection high-energy electron diffraction (RHEED) measurements taken prior to

and after VCSEL growth showed significant discrepancies. At first, we attempted to correct

this problem by adding optical monitors to the MBE system, and using fits to reflectance

data at various stages in sample growth to correct for such growth rate drifts. The Varian

Gen II MBE system used in this project is not readily adaptable for in-situ real-time

monitoring of growth. However, this system does have affixed to it a sample preparation

chamber used to load multiple wafers onto a wheeled substrate holder prior to an interlock

connecting to the actual growth chamber. This intermediate chamber has optical viewports

allowing the potential for reflection (R(λ)) and photoluminescence (PL(λ)) measurements

while under high-vacuum conditions. In this way, we sought to break the growth of a

VCSEL into stages–bottom mirror growth, growth of active region, and top mirror growth–

and perform such quasi-in-situ PL(λ) and R(λ) measurements. The information from these

spectra and resultant fits could then allow growth rate re-calibration without the need to

load new RHEED samples into the chamber, and also without the need to break high-

vacuum. Although this is not as useful as true real-time growth rate monitoring, it does

significantly shorten the turnaround time and offer the opportunity for increased success

for each growth run. Figure 58 shows an example of R(λ) and PL(λ) spectra measured

for such an application. This figures shows that the fit values for AlxGa1−xAs and GaAs

growth rates are 98.2% and 97.8% of the ideal rates, respectively. Also, this figure shows

how the photoluminescence spectrum peaks near 971 nm, whereas the cavity dip measured

after growth of the bottom mirror and active region of the VCSEL indicates a reflectivity

“notch” at 967.3 nm, indicating relatively good alignment between gain peak and cavity

resonance.

Although this ability of quasi-in-situ growth monitoring helped immensely, it was still far

from allowing us to generate a working VCSEL. Two other significant enhancements to the
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FIG. 58: Measured reflectivity and photoluminescence spectra for a VCSEL sample at various

stages during growth. The red curve shows the calculated fit to only the bottom DBR spectrum

(not shown); the blue curve is R(λ) for the DBR + active region, with an indicated cavity resonance

at 967.3 nm; the magenta curve shows PL(λ) at this same stage in growth, with a peak at 971.0

nm, indicating suitable alignment of the gain to the cavity.

MBE tool were then performed. The first was a complete overhaul of the control code and

machinery interfacing to the machine. In a sweeping re-vamp of this system, we replaced not

only a host of convention growth effusion cells with larger capacity (400 g) SUMO cells from

EPI MBE Products. The larger capacity cells not only would allow longer operation of the

machine between re-filling of the cells, but were also demonstrated to be more stable for long-

term growth operations. Along with the cells came a host of upgrades for the temperature

controllers, and a new interfacing system (a National Instruments FieldPoint Module) to

allow faster communications between a desktop computer system to all of the various controls

of the MBE (including oven temperatures settings, shutter actuators, and substrate rotation

control). The underlying software architecture for device growth was then separated into

two elements of code. The first part was a National Instruments LabView interface control
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FIG. 59: Sample Epitaxial Description Language input deck for the instructions for growth of a

980-nm VCSEL via MBE.

code to perform all of the necessary hardware operations, including “graceful” shutdown of

the system for maintenance. The second piece of control software, the so-called Epitaxial

Description Language (EDL), was a Microsoft Visual C++ compiler code that renders text

input from a Microsoft Word table into a series of commands capable of being read by the

LabView code and summarily translated into machine operable instructions. This overhaul

of the control software for the MBE system, although time consuming and laborious, resulted

in an elegant and flexible “language” for growth of various structures by this system. An

example of an EDL compiler code table for the growth of an entire VCSEL is demonstrated

in Fig. 59. Examination of this input deck will show the inclusion of digital alloy grading in

both the top p-doped DBR mirror, as well as to form high Al mole fraction oxide aperture

layers.

The second major modification to this system was the inclusion of a carbon tetrabro-

mide (CBr4) p-doping source. It has been found that the use of carbon as a p-doping

source provides two main benefits: (1) the ability to dope at much higher concentrations
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FIG. 60: Plot of activated dopant concentration versus depth in sample for a carbon-doped GaAs

wafer.

(∼ 1020cm−3), and (2) the fact that carbon as a p-type dopant does not diffuse nearly as

much as more typical dopants, such as beryllium. In all, these combine to allow better tai-

lored p-dopant profiles. As this flavor of dopant generally presents more material optical loss

than n-dopants, one can readily see the advantages of being able to place heavily p-doped

layers in regions of the optical cavity where the lasing mode field intensity is highest, and

vice versa. Figure 60 shows a plot of activated dopant concentration versus depth in sample

for a p-GaAs epitaxial growth. This was performed as a calibration sample to verify both

our ultimate doping levels with this new oven, and also the control with valve position that

this source enables.

Processing Capability Development

The key processing steps for most semiconductor devices, after successful epitaxial

growth, are typically (1) Deposition of metal contacts, (2) ability to etch various mate-

rial with high fidelity, and (3) ability to isolate or passivate materials for profiled conduction

of current through a device. This is equally true for VCSEL processing, but in our case, an-

other key processing step includes the ability to perform selective oxidation in high aluminum

mole fraction AlxGa1−xAs materials, the benefits of which has been previously discussed.
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FIG. 61: SEM micrograph of an ICP/RIE etch of an AlAs-GaAs etalon structure. The individual

layers comprising the top (8 periods) and bottom (8.5 periods) DBRs are clearly visible. Of note

is the sidewall smoothness and anisotropic nature of the etch.

Ohmic contacts to standard III-V materials are well established, and we have made

no effort to improve upon the voluminous amount of prior existing work. The reader may

therefore reference any standard text on III-V material processing for suggested metal recipes

for VCSEL fabrication. For our effort, p-metal deposition was typically Ti/Au or Ti/Pt/Au,

whereas n-metal depositions were of the Ni/Ge/Au/Ni/Au variety.

For mesa etching, however, we employed a (then) state-of-the-art technology, inductively-

coupled-plasm reactive ion etching (ICP/RIE), to perform mesa isolation and VCSEL device

definition. The tool used was a Plasma-Therm (now Unaxis) model SLR770 ICP/RIE

system. This system is design etching a single wafer at a time, and is a loadlock system with

6 process gases. Our etch recipe used 30 sccm of BCl3 with 10 sccm of Cl2, and the etch was

done typically under the following tool conditions: pressure of 4 mTorr, wafer temperature

of 10 ◦ C, utilizing 600 W of ICP power and 50 W of RIE power. Results from etching

an “empty etalon” structure consisting of 8 periods of alternating top AlAs/GaAs DBR

layers and 8.5 periods of bottom DBR layers with a 1-λ GaAs etalon cavity layer are shown

in Fig. 61. From this SEM micrograph, it is evident that we are obtaining very smooth

and vertical sidewalls using this etch recipe. For sake of comparison, each alternating light

(AlAs) and dark (GaAs) layer is comprising either mirror stack is nominally 789 Å or 696

Å thick, respectively.

Furthermore, in order to enable us to precisely control the etch depth, we outfitted

this system with a homemade reflectance etch monitor system (Fig. 62). This system is
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FIG. 62: Schematic cross section of the in-house ICP/RIE system, complete with custom-built

reflectance monitoring system.

comprised of a laser diode (nominally λlaser ≈ 789 nm), a silicon photodiode detector, an

imaging camera with laser line filter (to block all but a small portion of the laser diode

signal, to prevent saturation during alignment), and a removable beamsplitter. The output

of the photodiode is then sent to a desktop PC to collect the reflected signal as a function

of time. The etch trace collected by this system for the sample shown in Fig. 61 is given in

Fig. 63.

As an early demonstration of the powerful capability of this system, we processed VC-

SEL material grown by the Army Research Laboratory, Sensors and Electron Devices Direc-

torate (at the time, under the direction of George Simonis) . This ARL structure, denoted

ARL1236, was an intracavity contacted device incorporating dual oxide apertures on either

side of the gain region. Figure 64 shows our results in etching this sample. In this figure,

the x-axis represents depth into the sample in µm, with the vertical axis plotting either the

refractive index profile of the device, or the etch trace obtained from our etching system.

The shaded areas represent the regions of top- or bottom-contact areas for this device, nom-

inally 3λ
4n

thick, with λ the design wavelength (980 nm) and n the refractive index of the

material. Also shown on this plot is the final etch profile of this device taken on a Tencor

P-10 stylus profilometer. This figure demonstrates our ability to etch device with the tight

tolerances necessary to form intracavity contact VCSELs.

With our ability to etch samples and deposit Ohmic contacts, the final piece of the
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FIG. 63: Plot of reflected signal versus time for the etched sample of Figure 61.

FIG. 64: Plot of reflected signal versus time for an intracavity contacted VCSEL grown by the

Army Research Laboratory.
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FIG. 65: Schematic diagram of our custom-built oxidation furnace complete with capability for

in-situ monitoring.

puzzle for fabrication of oxide-apertured VCSELs was the formation of the oxide apertures

themselves. In order to reproducibly define small features by oxidizing AlGaAs layers, it

is essential to have good control over the oxidation reaction. To push VCSEL structures

to their ultimate threshold limits, these apertures must constrict to 1 µm and below.[59].

Unfortunately, the oxidation reaction in a conventional furnace is hard to control, making it

difficult to reproducibly define such small features. We have integrated a glass viewport into

a cold-walled oxidation chamber to enable in-situ optical monitoring of the sample during

oxidation (see Fig. 65). To prevent water vapor from condensing on the cold window and

obscuring the sample, the reaction chamber is operated at low pressure (5 Torr). This low

pressure also allows rapid evacuation of the chamber, which immediately halts the reaction.

To gain additional control, we reduced the oxidation temperature to 325 ◦C, consequently

slowing the oxidation rate to 2 µm per hour. The combination of optical monitoring, slow

oxidation rate, and rapid shutoff greatly increases our control over the reaction and allows

us to define small features precisely.
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Real-time in-situ optical measurements of AlAs oxidation rates were performed using this

system and the results were compared with a standard model [60]. Oxide-semiconductor

distributed Bragg reflectors were also fabricated and measured, yielding highly-reflective

mirrors suitable for vertical-cavity surface-emitting laser fabrication.

To verify that these oxides have suitable optical and mechanical properties for DBR mirror

fabrication, we also measured the reflectance of oxidized DBR features. The low oxidation

rate makes it impractical to oxidize large features. Therefore we constructed an imaging

system capable of measuring the reflectance of small ('20 µm) features. The samples

under study were composed of five periods of GaAs (695 Å) and AlAs (1530 Å) grown

by molecular beam epitaxy on a GaAs substrate. Vertical posts, with square and circular

cross sections ranging in size from 5 to 40 microns, were reactive-ion-etched into the wafer

using the following procedure. The wafer was first covered by Si3N4 using plasma-enhanced

chemical vapor deposition and then coated with photoresist. The resist was patterned using

conventional lithographic techniques, the Si3N4 was anisotropically etched in a CF3H/O2

plasma, and the remaining resist was removed. The patterned Si3N4 was used as a mask for

an anisotropic BCl3/He plasma etch of the epitaxial layers, and was subsequently removed

by isotropic etching in a CF4/O2 plasma. Finally, the exposed AlAs layers in the wafer

were protected from atmospheric water vapor by re-depositing 500 Åof Si3N4 over the entire

wafer. The resulting features exhibited side-wall angles less than 5◦ from perpendicular.

All oxidation samples were prepared from this single wafer: immediately prior to oxidation,

samples were cleaved from the wafer and the Si3N4 protective layer was removed by a CF4/O2

plasma etch.

The oxidation furnace, schematically depicted in Figure 65, comprises a conventional

sample heater with an integral thermocouple to control the sample temperature. Pure

water vapor is delivered to the chamber at a fixed flow rate through a vapor-source mass-

flow controller. A feedback control system maintains the chamber pressure at 5 Torr: the

system consists of a capacitance-manometer pressure sensor driving a butterfly throttle-

valve on a mechanical vacuum pump. As the AlAs layers are oxidized, the near-infrared

reflectivity of the DBR samples changes dramatically. By illuminating the sample with

near-infrared light and viewing the reflection with a silicon CCD camera attached to a long-

working-distance microscope, we easily discriminate between the oxidized and unoxidized

regions. The dramatic contrast is evident in the near-infrared photograph shown in Figure
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FIG. 66: Near infrared image of a sample during the oxidation process. The high refractive index

contrast between the unoxidized AlAs (n ' 3.0), and native oxide (n ' 1.6) is readily apparent in

this image.

66.

Samples were oxidized in the system at temperatures ranging from 325 to 400 ◦C. The

color of the oxidized samples was identical for all oxidation conditions. Thick AlAs samples

that were oxidized downward from the top surface of the wafer were found to be somewhat

unstable mechanically, tending to delaminate from the substrate material just at the point

when the layer was fully oxidized. However, laterally oxidized samples showed no tendencies

to delaminate under any of the oxidation conditions discussed here, and in fact were found

to be quite rugged. In addition, unprotected AlAs samples were found to degrade quite

quickly (in a matter of a few days) in ambient conditions, but oxidized samples, even those

oxidized at low temperatures, show no signs of degradation after nearly one year. Since the

purpose of this study is to develop a process to fabricate VCSELs using laterally oxidized

layers, we hereafter consider only laterally oxidized samples.

By viewing the samples through the CCD camera and charting the lateral extent of the

oxide as a function of time, we measured the oxidation rate without removing the sample

from the chamber or interrupting the reaction. The results are plotted in Figure 67. The

temperature range studied was limited at the low end by the length of time needed to

reliably measure an appreciable oxidation distance, and was limited at the high end by the

components of the oxidation system, notably the elastomer seals on the chamber. For some
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FIG. 67: Oxidation distance as a function of time for several temperatures. All oxidations were

carried out at a water vapor pressure of 5 Torr and a flow rate of 500 sccm.

samples, a small time delay (approximately 5-15 min) elapsed before noticeable oxidation

occurred; the delay did not vary systematically with oxidation temperature. This delay

could result from uncontrolled surface oxidation in the brief time between Si3N4 removal

and sample loading.

VCSEL Device Results

As a result of all of the previous underlying work, we designed, grew, and fabricated a las-

ing structure aimed at sub-mA threshold current operation. The resultant structure design

was a dual oxide apertured structure employing 21 carbon-doped p-type GaAs/Al0.9Ga0.1As

DBR mirror layers (complete with 180 Å digital alloy grades between the materials), a 1-λ

cavity region with 3 80-Å In0.2Ga0.8As as the active region. The bottom DBR consisted of

41 pairs of silicon doped GaAs/Al0.9Ga0.1As n-type mirror layers without any grading be-

tween the layers. As seen in Figures 68, 69, we have made an extra-cavity contacted device

(for ease of fabrication) that, when operating at room temperature, displays a threshold

current of ith = 122 µA with a threshold voltage of Vth = 2.76 V. As detailed in Figure

68, we see the following behavior for lasing wavelength, λlase, as a function of the oxide

aperture radius, ρOX : λlase holds steady for devices with larger oxide apertures (little effect

93



FIG. 68: Plot of ith and λlase as a function of oxide aperture radius for an in-house design, grown,

and fabricated VCSEL structure. See the accompanying text for the device description.

on the microcavity resonance condition); as the size of the aperture shrinks, the wavelength

actually redshifts slightly (presumably due to device heating due to increased current crowd-

ing effects); and eventually the lasing emission blueshifts, as predicted by both the VFEM

and WIMP simulations. As our “cold cavity” simulations were not performed under a cou-

pled optical + thermal + electrical phenomenology, the effects of current crowding inducing

heating in these structures was not incorporated.

One of the critical features for obtaining very efficient, low-threshold VCSELs is to ensure

that the gain peak aligns with the cavity resonance under anticipated operating conditions.

Indeed, this was part of the underlying motivation for development of the WIMP and VFEM

tools–to incorporate such shifts a priori in our designs. One is never guaranteed, however,

that growth will match the design conditions. To test that the gain peak was close to

the cavity resonance for the smallest oxide aperture devices (first data points, lowest ith in

Figures 68, 69), we performed similar experiments in a temperature controlled probe-stand.

It is well known that the gain peak shifts much more rapidly with temperature than the

cavity resonance (see, e.g., [61] and references therein). Hence, but performing measurements

of ith as a function of temperature, we may infer the amount of mismatch in gain and cavity
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FIG. 69: Plot of jth and Vth as a function of oxide aperture radius for an in-house design, grown,

and fabricated VCSEL structure. See the accompanying text for the device description.

FIG. 70: Plot of ith, Vth, and λlase as a function of temperature for one of the oxide aperture

VCSELs shown in Figure 68. The minimum for ith and Vth occurs near 17 ◦C, indicating good

match between design and the ultimate device results.

resonances. Figure 70 shows the results of this experiment.
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From this figure, it is evident that our design was very close to ideal, in than, for a

structure with ρOX = 1.8µm, the minima in both ith and Vth occurs just slightly below room

temperature, nominally 17 ◦C. For completeness, the shift in λlase with temperature is also

plotted.

SUMMARY AND FUTURE EFFORTS

In the AFOSR supported in-house research project, we embarked on an effort to generate

extremely low-threshold VCSELs. To support this effort, state of the art simulation suites

were developed to outline the optical physics of microcavity structures, including etched

post designs, and oxide apertures layers with or without spatial tapered profiles. The two

methods, the weighted index method with parasitic mode coupling (WIMP), and the full

vector finite-element method (VFEM), has been applied to many VCSEL structures. We

have succeeded in predicting lasing wavelength blueshifts with decreasing oxide aperture

diameters, both for published results and for our own in-house made devices. We have

successfully managed to describe the relative design merits for inclusion of oxide apertures

in microcavity resonator designs, again through explaining and interpreting the heretofore

confusing results found in the literature. We have also shown the benefits toward applying

tapered oxide aperture designs for “blunting” the diffraction losses incurred by “blunt” aper-

tures. Finally, in the design arena, we have developed quasi-analytic means for calculating

the transmission and reflection properties of graded-layer structures, and showed the utility

of this generalized interface approach for design of DBR mirrors and VCSELs using digital

alloying grading at the material interfaces.

Our in-house growth and fabrication yielded VCSELs operating cw at room temperature

with threshold currents as low as 122 µA. For a manufacturable (i.e. high-yield) structure

utilizing current injection through the p- and n-DBR mirrors, this was less than a factor of

2 from the best published results at the time, and less than a factor of 14 from the best

devices period.

As a result of this research effort, we have also greatly increase the growth and fabrication

capability at AFRL. An overhaul of the Varian GEN II MBE machine used for this project

has results in VCSEL class material. We have also demonstrated a custom built steam

oxidation furnace for creation of native oxides of aluminum from AlGaAs material, com-
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FIG. 71: Plot the reduced voltage needed to drive a bipolar cascade edge emitting laser. A detailed

description of this device is not in the scope of this report, and the reader is encourage to consult

reference [62] for further details on this newer effort.

plete with in-situ monitoring allowing for high-precision control of oxide-apertured VCSEL

structures.

Future efforts for optoelectronics and semiconductor device research will see spillover

benefits from the efforts made on this project. Indeed, we have embarked on efforts to

generate interband (so-called “bipolar”) cascade lasers for the purpose of radiofrequency-

photonic links. These devices, which incorporate Esaki tunnel junctions as small-resistance

interconnects between lasing active regions, are predicted to have superior noise and overall

link gain characteristics compared to tradition laser diodes, a feature we aim to demonstrate

experimentally. Indeed, we have already shown single- and multi-color emission from edge

emitting structures (see Figure 71 and [62], for example), and we are now pursuing VCSEL

geometries for device improvements. This, and other efforts, will be the subject of a future

report.
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